
www.manaraa.com

www.manaraa.com

Grids and Service-Oriented Architectures for
Service Level Agreements

www.manaraa.com

1 C

Philipp Wieder • Ramin Yahyapour
Wolfgang Ziegler
Editors

Grids and Service-Oriented
Architectures for Service
Level Agreements

www.manaraa.com

ISBN 978-1-4419-7319-1 e-ISBN 978-1-4419-7320-7
DOI 10.1007/978-1-4419-7320-7
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2010932013

© Springer Science+Business Media, LLC 2010
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connec-
tion with any form of information storage and retrieval, electronic adaptation, computer software, or by
similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Editors
Philipp Wieder
TU Dortmund University
IT & Media Center
Service Computing Group
44221 Dortmund
Germany
philipp.wieder@udo.edu

Ramin Yahyapour
TU Dortmund University
IT & Media Center
Service Computing Group
44221 Dortmund
Germany
ramin.yahyapour@udo.edu

Wolfgang Ziegler
Fraunhofer-Gesellschaft
Institute for Algorithms and
Scientific Computing SCAI
Schloss Birlinghoven
53754 Sankt Augustin
Germany
wolfgang.ziegler@scai.fraunhofer.de

www.manaraa.com

Contents

Foreword vii
Preface ix
Contributing Authors xiii

Monitoring Service Level Agreements in Grids with support of a Grid
Benchmarking Service 1

Ely de Oliveira, Franz-Josef Pfreundt

Reactive Monitoring of Service Level Agreements 13
Dalia Khader, Julian Padget, Martijn Warnier

Lessons Learned from Implementing WS-Agreement 23
Dominic Battré, Matthias Hovestadt, Oliver Wäldrich

SLA-aware Resource Management 35
Yih Leong Sun, Ron Perrott, Terence J Harmer, Christina Cunningham, Peter Wright,
John Kennedy, Andy Edmonds, Victor Bayon, Jacek Maza, Gregor Berginc, Primož
Hadalin

Distributed Trust Management for Validating SLA Choreographies 45
Irfan Ul Haq, Rehab Alnemr, Adrian Paschke, Erich Schikuta, Harold Boley, Christoph
Meinel

Evaluation of Service Level Agreement Approaches for Portfolio Management in
the Financial Industry 57

Tobias Pontz, Manfred Grauer, Roland Kuebert, Axel Tenschert, Bastian Koller

Expressing Intervals in Automated Service Negotiation 67
Kassidy P. Clark, Martijn Warnier,
Sander van Splunter, Frances M.T. Brazier

GreenIT Service Level Agreements 77
Gregor von Laszewski, Lizhe Wang

Extending WS-Agreement with Multi-round Negotiation Capability 89

www.manaraa.com

vi GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

Angela Rumpl, Oliver Wäldrich, Wolfgang Ziegler

Enabling Open Cloud Markets Through WS-Agreement Extensions 105
Marcel Risch, Jörn Altmann

Service Mediation and Negotiation Bootstrapping as First Achievements Towards
Self-adaptable Cloud Services 119

Ivona Brandic, Dejan Music, Schahram Dustdar

SLA Negotiation for VO Formation 133
Shamimabi Paurobally

From Service Markets to Service Economies – An infrastructure for protocol-
generic SLA negotiations 145

Sebastian Hudert

Service Level Agreements in BREIN 157
Bastian Koller, Henar Munoz Frutos, Giuseppe Laria

Negotiation and Monitoring of Service Level Agreements 167
Thomas B. Quillinan, Kassidy P. Clark, Martijn Warnier, Frances M.T. Brazier, Omer
Rana

Author Index 177

www.manaraa.com

Foreword

This book contains the proceedings of the 2nd Workshop on Service Level
Agreements in Grids, which was held in conjunction with the IEEE GRID 2009
Conference on October 13, 2009, and the proceedings of the Dagstuhl seminar
Service Level Agreements in Grids organized in March 2009. Furthermore, this
book constitutes the 13th volume of the CoreGRID book series.

CoreGRID was and is the Network of Excellence in Grid and P2P technolo-
gies funded by the European 6th Framework Programme. While the funding
period as a project ended in 2008, one of great successes of CoreGRID is its
sustainability. The network continued to successfully collaborate as an effective
think tank in the area of Grids, distributed computing platforms and Cloud
Computing. Meanwhile, the activities were supported by ERCIM as a working
group on Grids, P2P and Service computing, retaining the name of CoreGRID.
This also ensures sustainability of the network, maintaining and extending the
active collaboration within the European Grid and SOA research community.

Being personally involved in the activities of the CoreGRID Institute on
Resource Management and Scheduling, I felt privileged by the possibilities
in collaborating with so many excellent partners. The continuous interest
in research collaborations lead to fruitful and encouraging discussions. This
demonstrates that CoreGRID achieved its goal to form a vivid and sustainable
European Network of Excellence.

One outcome of these collaborations is the organization of this workshop
and this seminar, and eventually the creation of this book. The proceedings
show the ongoing research activities around service level agreements which are
considered one of the crucial hot topics in managing services and infrastructures.
The proceedings also highlight that the once very focused field of Grids extends
its scope and includes now service-oriented and Cloud infrastructures as well.

I hope you enjoy the reading of the book, which is the joint work of many
people. Thus, I would like to express my gratitude to all people involved in the
workshop and editing of the book.

Ramin Yahyapour, CoreGRID Institute lead

www.manaraa.com

Preface

The ERCIM CoreGRID working group includes a large number of European
scientists working to achieve high-level research objectives in Grid and Peer-
to-Peer systems. The working group brings together a critical mass of well-
established researchers from more than forty European institutions active in
the fields of distributed systems and middleware, models, algorithms, tools and
environments.

Guarantees for quality of service in Distributed Computing Infrastructures
like Grid and Clouds have turned out to be a critical as the different technol-
ogy stacks became more mature and operational for production usage. The
integration service-oriented architecture concepts in the Grid computing model
and the growing impact of Cloud Computing put in place new technological
solutions in the world of service-oriented architectures. Service-oriented Grids
provide effective solutions in science and business as they offer interoperable
high-performance systems for handling data- and compute-intensive distributed
applications. In parallel, new methods and technologies became necessary
allowing to negotiate and agree on the quality of services leading to electronic
Service Level Agreements (SLAs).

This book is the 13th volume of the CoreGRID book series and it brings
together scientific contributions by researchers and scientists working on dif-
ferent aspects of Service Level Agreements. The book includes contributions
presented at the Dagstuhl Seminar Service Level Agreements in Grids organised
between March 22nd to 27th 2009, and the IEEE Workshop on Service Level
Agreements in Grids, which was held on October 13, 2009. This was the second
workshop of its kind. The first workshop took place in Austin, Texas, US in
2007.

The objectives of both the seminar and the workshop are

to discuss the current state of the art and new approaches in application
areas that apply Service Level Agreements in the context of Grids, Clouds
and distributed systems;

to provide a forum for exchanging ideas between the different research
communities focussing inter alia on agent-based approaches to SLA man-

www.manaraa.com

x GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

agement, Grid economics, and SLA-based Grid resource management
and scheduling;

to jointly work towards the development of an automated and standardized
electronic negotiation of Service Level Agreements; and

to provide input to the CoreGRID ERCIM Working Group.

This book contains 15 chapters. The first and the second focus on approaches
to monitor Service Level Agreements. The third chapter presents experience
made with the implementation of the Open Grid Forum’s Web Services Agree-
ment specification. The fourth chapter presents benefits of SLA-enabled re-
source management, while chapter five discusses the role of distributed trust
management for validating SLA choreographies.

The sixth chapter presents an overview on how Service Level Agreement
approaches are used for financial Grid applications. Chapter seven then iden-
tifies issues of SLA negotiation between autonomous agents and proposes a
notation for expressing intervals. The eighth chapter presents an overview on
the application of Service Level Agreements for Green IT. Chapter nine and
ten introduce two extensions to the Web Services Agreement standard, as there
are an approach for a multi-round negotiation extension in chapter nine and an
extension to Web Services Agreement to create open Cloud markets in chapter
ten, respectively.

Chapter eleven describes a novel approach for a service economy infrastruc-
ture, based on structured protocol descriptions and software-agent technology.
Chapter twelve gives an overview on implementation and usage of SLAs in the
European project BREIN. The thirteenth chapter discusses recent advances in
the field of negotiation and the definition of Quality of Service characteristics,
and proposes some additional features that can help both consumers and pro-
ducers during the enactment of services. Chapter fourteen present first results
in establishing adaptable, versatile, and dynamic services considering negoti-
ation boot-strapping and service mediation with a focus on meta-negotiation
and SLA mapping solutions for Grid or Cloud services representing important
prerequisites for the establishment of autonomic services. The last chapter
then deals with the negotiation of Service Level Agreements and introduces an
automated negotiation techniques between web services for the formation of
virtual organisations.

www.manaraa.com

PREFACE xi

The editors would like to thank all Program Committee members who care-
fully reviewed the contributions to this book:
Christiana Amza, University of Toronto, Canada
Dominic Battré, TU Berlin, Germany
Francis Brazier, Vrije University, Amsterdam, The Netherlands
Asit Dan, IBM, US
Wolfgang Gentzsch, DEISA, Germany
Matthias Hovestadt, TU Berlin, Germany
Liviu Joita, Cardiff University, UK
Bastian Koller, HLRS, Stuttgart, Germany
Ioannis Kotsiopoulos, University of Manchester, UK
Gregor von Laszewski, Rochester Institute of Technology, US
Heiko Ludwig, IBM, USA
Toshi Nakata, NEC Research, Japan
Julian Padget, Bath University, UK
Shamima Paurobally, University of Liverpool, UK
Thomas Quillinan, VU University Amsterdam
Omer Rana, University of Cardiff, UK
Igor Rosenberg, ATOS Origin, Spain
Rizos Sakellariou, University of Manchester, UK
Luigi Telesca, Create-Net, Italy
Daniel Veit, University of Mannheim, Germany
Oliver Wäldrich, Fraunhofer Institute SCAI, Germany

We would like to thank all the participants for their contributions to making
both the Dagstuhl seminar and the IEEE workshop a success, the workshop
Program Committees for investing their time and sharing their experience, and
all the authors that contributed chapters for publication in this volume. A special
thank goes to the Springer staff for their assistance in editing the book.

Our thanks also go to the European Research Consortium for Informatics
and Mathematics (ERCIM) for sponsoring this volume of the CoreGRID series
of publications.

Philipp Wieder, Ramin Yahyapour, Wolfgang Ziegler

www.manaraa.com

Contributing Authors

Rehab Alnemr Hasso Plattner Institute, Potsdam University, Germany

Jörn Altmann Seoul National University, Seoul, South-Korea

Dominic Battré Technische Universität Berlin, Germany

Victor Bayon Intel Innovation Centre, Intel Ireland Limited, Ireland

Gregor Berginc XLAB d.o.o., Slovenia

Harold Boley Institute of Information Technology, National Research Council,
Canada

Ivona Brandic Institute of Information Systems, Vienna University of Technol-
ogy, Austria

Frances M.T. Brazier Systems Engineering, Faculty of Technology, Policy
and Management, Delft University of Technology, The Netherlands

Kassidy P. Clark Systems Engineering, Faculty of Technology, Policy and
Management, Delft University of Technology, The Netherlands

Christina Cunningham Belfast e-Science Centre, The Queen’s University of
Belfast, UK

Schahram Dustdar Institute of Information Systems, Vienna University of
Technology, Austria

www.manaraa.com

xiv GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

Andy Edmonds Intel Innovation Centre, Intel Ireland Limited, Ireland

Henar Munoz Frutos Telefonica Investigacin y Desarrollo S.A, Spain

Manfred Grauer University of Siegen, Information Systems Institute, Ger-
many

Primož Hadalin XLAB d.o.o., Slovenia

Irfan Ul Haq Department of Knowledge and Business Engineering, University
of Vienna, Austria

Terence J Harmer Belfast e-Science Centre, The Queen’s University of Belfast,
UK

Matthias Hovestadt Technische Universität Berlin, Germany

Sebastian Hudert Department of Information Systems Management, Univer-
sity of Bayreuth, Germany

John Kennedy Intel Innovation Centre, Intel Ireland Limited, Ireland

Dalia Khader Department of Computer Science, University of Bath, UK

Bastian Koller High Performance Computing Center Stuttgart, Germany

Roland Kuebert High Performance Computing Center Stuttgart, Germany

Giuseppe Laria Centro di Ricerca in Matematica Pura ed Applicata, University
of Salerno, Italy

Gregor von Laszewski Pervasive Technology Institute, Indiana University, US

Jacek Maza Intel Innovation Centre, Intel Ireland Limited, Ireland

Christoph Meinel Hasso Plattner Institute, Potsdam University, Germany

www.manaraa.com

Contributing Authors xv

Dejan Music Institute of Information Systems, Vienna University of Technol-
ogy, Austria

Ely de Oliveira Fraunhofer Institut für Techno-und Wirtschaftsmathematik,
DE

Julian Padget Department of Computer Science, University of Bath, UK

Adrian Paschke Institute of Computer Science, Freie University Berlin, Ger-
many

Shamimabi Paurobally School of Electronics and Computer Science, Univer-
sity of Westminster, UK

Ron Perrott Belfast e-Science Centre, The Queen’s University of Belfast, UK

Franz-Josef Pfreundt Fraunhofer Institut für Techno-und Wirtschaftsmathe-
matik, Germany

Tobias Pontz University of Siegen, Information Systems Institute, Germany

Thomas B. Quillinan D-CIS Lab, Thales Research and Technology, The
Netherlands

Omer Rana School of Computer Science/Welsh eScience Centre, Cardiff
University, UK

Marcel Risch Seoul National University, Seoul, South-Korea

Angela Rumpl Department of Bioinformatics, Fraunhofer Institute SCAI, Ger-
many

Erich Schikuta Department of Knowledge and Business Engineering, Univer-
sity of Vienna, Austria

Sander van Splunter Systems Engineering, Faculty of Technology, Policy and
Management, Delft University of Technology, The Netherlands

www.manaraa.com

xvi GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

Yih Leong Sun Belfast e-Science Centre, The Queen’s University of Belfast,
UK

Axel Tenschert High Performance Computing Center Stuttgart, Germany

Oliver Wäldrich Department of Bioinformatics, Fraunhofer Institute SCAI,
Germany

Lizhe Wang Pervasive Technology Institute, Indiana University, US

Martijn Warnier Systems Engineering, Faculty of Technology, Policy and
Management, Delft University of Technology, The Netherlands

Peter Wright Belfast e-Science Centre, The Queen’s University of Belfast, UK

Wolfgang Ziegler Department of Bioinformatics, Fraunhofer Institute SCAI,
Germany

www.manaraa.com

MONITORING SERVICE LEVEL AGREEMENTS

IN GRIDS WITH SUPPORT OF A

GRID BENCHMARKING SERVICE

Ely de Oliveira, Franz-Josef Pfreundt
Fraunhofer Institut für Techno- und Wirtschaftsmathematik
Kaiserslautern, Germany
{ely.oliveira, pfreundt}@itwm.fraunhofer.de

Abstract As Computational Grids become more popular, a new generation of grid appli-
cations emerges, demanding strict and increasingly sophisticated guarantees of
quality of service. This challenge has motivated the development of numerous
technologies to enable service providers and consumers to establish Service Level
Agreements (SLAs). The implementation of SLAs requires mechanisms for these
agreements to be monitored and enforced, so that they can be dependable.

Most of existing SLA monitoring techniques are embedded in particular SLA
specification, negotiation and management mechanisms. This poses significant
limitations for their adoption in large scale, heterogeneous, decentralized grid
infrastructures.

In this paper, we present how SLAs can be assessed, monitored and enforced
with support of Jawari, a multi-platform, extensible and free of charge grid
benchmarking service. Jawari works as an independent external entity that
validates the adherence of the grid components to committed SLAs, by simply
using the grid services just like an end-user would do. Doing so, it is able
to observe the actual levels of quality of service the end-users are likely to
experience.

Its benchmarks represent classes of grid applications with distinct require-
ments that expose the grid services to scenarios where the SLA is expected to be
observed. Complementarily, SLA violation conditions can be routinely checked,
and proper actions taken in response.

Keywords: Grid Benchmarking, SLA Monitoring, SLA Enforcement

P. Wieder et al. (eds.), Grids and Service-Oriented Architectures for Service Level Agreements,
DOI 10.1007/978-1-4419-7320-7_1, © Springer Science+Business Media, LLC 2010

www.manaraa.com

2 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

1. Introduction

Over the past decade, Grid Computing has emerged as a solution for the chal-
lenge of supporting applications with unprecedented requirements of scalability,
computing power, platform independence, security, reliability, availability and
low cost. Several middleware systems have been developed in order to make
it possible for computational grids to be built [11, 14, 15, 13]. Despite their
common goals, they have been developed independently, targeting different
communities and use cases and this has turned them into very different solutions.
Their architectures are composed by different components, relying on different
protocols and algorithms, providing interfaces with different semantics and
different levels of abstraction. Moreover, middleware systems are often com-
bined with other components such as batch systems and even other middleware
systems, what results in intricate infrastructures [12, 11, 13].

All this complexity undermines the ability of grid infrastructures to deliver
steady platforms on which grid applications can rely. It creates an overhead
that may lead services to achieve poor and unstable levels of Quality of Service
(QoS). Maintenance activities may become too complex and time demanding,
resulting in misconfigured components, which boosts unpredictability. Still,
present day grid applications, mostly scientific, can succeed in such environment.
Despite high levels of QoS are preferred and even desired by their users, such
applications can tolerate some degree of lateness and occasional failures without
compromising their results.

However, as identified by Bal et al. [3], a new generation of applications
has demanded strong guarantees of QoS provision that can no longer be given
by best-effort services. For example, weather services [6] and visualization
applications [7] rely on obtaining results within strict time frames. Therefore,
they require grid services to provide minimum levels of availability, reliability,
performance and scalability that are critical for their success.

In this context, a Service Level Agreement (SLA) is a powerful instrument
to describe all expectations and obligations in the relationship between service
provider and customer. Applications specify their requirements and services
commit themselves with the provision of a certain level of QoS. Such commit-
ment requires the adoption of a number of techniques, including fault tolerance
mechanisms, restrictions of resource usage, advanced resource reservation,
performance prediction tools and monitoring services.

The implementation of SLAs requires mechanisms for these agreements
to be monitored and enforced, so that they can be dependable. Most of SLA
monitoring techniques developed so far are embedded in particular SLA speci-
fication, negotiation and management mechanisms [9, 8]. They often rely on
specific protocols and technologies. This poses significant limitations for their

www.manaraa.com

Monitoring Service Level Agreements in Grids 3

widespread adoption in multi-domain, large scale, heterogeneous, decentralized
grid infrastructures.

Besides, some techniques have a narrow focus and act at resource level [6]. It
means that despite they may be effective in making resources work individually
as expected, it does not guarantee they work as expected as a composition.
For example, restrictions on the use of the network imposed by fault tolerance
mechanisms may ultimately affect the application response time, regardless of
how good the performance of computational resources is. Moreover, neglected
components or characteristics of the system may overshadow the benefits of
some techniques. For example, highly available and reliable computational
resources can contribute little to the application response time in a system where
the resource broker does not scale well. It is also important to keep in mind
that the dynamics of the environment can not be fully tamed and also play a
fundamental role in grid service provision.

In addition, each technique has a cost in terms of demanded resources, com-
plexity injected into the system and administration activities to keep them
working. Thus, they also need to be carefully chosen and their effectiveness
assessed, in order to properly contribute to SLA fulfillment and make it trust-
worthy.

Benchmarks allow us to assess capabilities and performance of computing
platforms. Hence, they would be an instrumental tool for SLA implementa-
tion, monitoring and enforcement. In this paper we present how Grid SLAs
can be assessed, monitored and enforced with support of Jawari [1]1, a Grid
Benchmarking and Monitoring Service. Jawari is extensible, open source, multi-
platform, free of charge and requires no special configuration on the grid side.
It benchmarks grid services by mimicking an end-user who submits applica-
tions of various classes, transfers files, queries information services, discovers
services and so on. Doing so, it is able to capture the quality of service the
end-users are likely to experience.

Jawari works as an independent external entity that allows both service
providers and consumers to validate the adherence of the grid infrastructures
to committed SLAs. It provides information that can be used in a variety of
scenarios, including performance prediction tools, reputation based resource
scheduling, resource provision accountability and billing mechanisms.

2. Related Works

Sahai et al. [9] propose an architecture based on a network of communicating
proxies, responsible for managing SLAs committed within their respective

1This project is sponsored by the German Research Ministry (BMBF).

www.manaraa.com

4 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

administrative domains. The proxies negotiate inter-domain SLAs, collect
measurements on service provision and trigger procedures for their evaluation.

In the project Sicilia [8], the SLAs are monitored throughout their life cycles
by the Monitoring Service. It continuously receives QoS measurements and
detects when an SLA needs attention. If so, it alerts the QoS Service that is
responsible for taking due actions. The monitoring data is stored in a database
that is later used by a Performance Prediction Service for identifying resources
that can potentially satisfy new SLAs during their negotiation phase.

Hovestadt [6] proposes to empower the grid middleware with an SLA-aware
Resource Management Service that features mechanisms like process and
storage checkpointing to realize fault tolerance. This component monitors
running jobs and the affected resources. In case of an error that can compromise
the adherence to the SLAs, it is able to migrate the job to another matching
resource.

Jawari does not claim to be self sufficient for SLA monitoring and enforce-
ment in grids. Traditional tools such as these ones remain essential for imple-
menting and managing the SLA mechanisms at resource and subsystem levels.
It rather complements them, allowing the system as a whole to be assessed and
monitored in a typically heterogeneous, multi-domain, large scale and dynamic
environment.

3. Architecture

The Jawari architecture is shown in Figure 1 and described in the following.

User

Software

Benchmark
Manager

Platform
Interfaces

MyProxy

����

Portlets

Web
Service

Command
Line Tools

Web
App Scheduler

<jobs>

Scorer

Notifications
Events

Notifier

!

Grid
Sites

Benchmarks
(GADL)

Repository

Results

User
Interfaces

Figure 1. Jawari Architecture

In order to achieve platform independence and extensibility, benchmark
workflows and their requirements are specified in a platform independent XML-
based language, so called GADL (Grid Application Description Language) [5].

www.manaraa.com

Monitoring Service Level Agreements in Grids 5

In addition, each middleware system is represented by a Platform Interface ob-
ject, that encapsulates all platform-specific functionalities, exposing a standard
interface to the other components.

The benchmarks are orchestrated by two components. The Scheduler is
responsible for their planning, according to the time constraints specified by
users, while the Benchmark Manager coordinates their executions. Firstly it
retrieves the benchmark GADL specification and composes workflow instances,
matching their required resources with site resources, either dynamically dis-
covered or statically informed by the user. After that, it submits the workflows
to the remote sites through the suitable Platform Interface object, that parses
the GADL specification into the platform-specific language. Then, it monitors
the execution, collects the results and finally stores them in the Repository.

During this process, a default X509 certificate is used for authentication.
Nevertheless, the user is allowed to inform the location of alternative certificates,
that can be retrieved from MyProxy Servers and used for that purpose. This
makes possible the evaluation of security issues such as user authorization,
Virtual Organization (VO) membership and certificate renewal procedures.

The user can also subscribe to event notifications. Some events are default,
such as benchmark failure and benchmark completion, but they can also be user
defined logical expressions, as explained in Section 5. The events are detected
by the Benchmark Manager and informed to the Notifier that sends notifications
to the interested users. These notifications can be emails, HTTP requests or
even SSH executions, permitting support teams to be alerted, remote procedures
to be triggered and other services to react to the events.

The Scorer object is responsible for calculating performance aggregated
scores. The default formula used for such calculation is explained in [1]. The
user can also define his own formulas according with his own criteria. These
formulas can use benchmark data as variables, such as low level measurements,
normalized results and execution time.

Jawari is available through 4 user interfaces: a web site for end-users, a web
service for client software, portlets for web portals and command line tools for
terminal users and shell scripting. Additionally, it provides a Java API that can
be used as a platform for grid application development. They make possible
several usage scenarios including the integration with other tools, maintenance
procedures automatization and service composition.

4. Benchmark Suite

The current suite includes more than twenty benchmarks. Roughly speaking,
they are synthetic grid applications - workflows of possibly interdependent
tasks, that represent classes of real grid applications, or usual fragments of those

www.manaraa.com

6 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

applications. In this Section, we briefly present some examples of the suite. For
a comprehensive description, please visit: jawari.net.

Firstly, the Single Connection benchmark focuses on grid services availability.
It simply opens a connection with the target service, checking solely whether it
is up and running or not.

A large group of benchmarks represents workflow patterns with different
levels of complexity. The Single Task is composed by a single task with no
file staging. On the other extreme, there is the Mixed Bag, composed by a
collection of asymmetrically interdependent tasks. It also includes the Bag of
Tasks, whose tasks are independent of each other and the Long Pipe, organized
as a chain of tasks executed one after another. These benchmarks have both
static and dynamic versions. The static ones define the execution place of each
task, while the dynamic ones let this definition to be made by the target grid
site. This group focuses on the efficiency of resource schedulers and brokers,
and adopts Job turnaround time as metric.

Error Prone Task is an extension of the Single Task, whose first execution
always fails. Its results are influenced by fault tolerance mechanisms such as
task replication and the ability of the job manager to detect errors and repeat
executions.

Another group of benchmarks focuses on service throughput. The Discovery
Overload and File Transfer Overload perform a voluminous series of simple
requests targeting single services from 4 distinct client machines. Complemen-
tarily, the Single File Transfer and Single Discovery perform single but complex
requests from single client machines. The metric used is the number of requests
attended per second.

Finally, some benchmarks focus on network bandwidth and how the middle-
ware manages parallel large files transfers. The 3-node Probe represents the
common situation when a large data file (100 Mb) is transferred from a data
source host to a compute host to be processed, and a result file is transferred to
a third location. The Gather Probe works in very much the same way, except
that multiple files are transferred in parallel from multiple data sources to the
center compute host. Similarly, the Data Job uses the user machine as both data
source and result destination nodes. The metric used is Job turnaround time.

While some benchmarks are new specifications, some others are variations
of previous works [2, 4], slightly modified to focus on certain grid features.
Originally, they have real computation tasks as part of their workflows. In
Jawari suite however, no computation is performed at all. Only lightweight
command line binaries such as echo are executed on the target environments.
Doing so, resources computational capabilities influence on the benchmark
execution is significantly reduced, so that the benchmarks can better reflect
other environment aspects, such as the middleware overhead. Nevertheless, the

www.manaraa.com

Monitoring Service Level Agreements in Grids 7

Jawari design permits the suite to be extended and incorporate other benchmarks
that might be identified as relevant for grid assessment.

The user is not limited to the standard benchmark suite. He can also write his
own benchmarks in GADL and extend his assessment possibilities, including
the execution of real world programs or other benchmark suites such as Lin-
pack [19], and the query of data collected by other services such as Nagios [20].
The only constraint of this feature is that for security reasons, Jawari default
certificate is used only by standard benchmarks. Therefore, the user must inform
the location of alternative certificates to be used by his custom benchmarks.

5. Monitoring SLAs

In Jawari, SLA monitoring begins with the selection of benchmarks that are
able to collect information about the assessed SLAs and the involved resources.
In some situations, multiple benchmarks might be necessary, since they have
relationships that help their results analysis. For example, a 3-node Probe is
embedded in a Gather Probe, as well as the Long Pipe is a kind of Mixed
Bag. Basically all benchmarks contain a Single Connection, and most of them,
a Single Task too. Therefore, collective benchmark results permit parallel
assessments that can point out some QoS variables, that would be difficult to be
revealed in isolation.

The next step is to choose their frequency of execution. They can be sched-
uled to be executed either at random times within a time window, or at specific
moments (some days of the week, some hours of the day, during a period of
time, etc). Some aspects must be considered at this point, namely the acceptable
SLA violation detection latency and the overhead the target services are able
to handle without compromising SLA fulfillment. This decision depends on
the characteristics of each system, and on the complexity of the benchmarks.
A good way to mitigate the problem would be the creation of independent
schedules with distinct frequencies for different groups of benchmarks and
resources.

Finally, the user needs to specify SLA violation conditions as events. They
are specified independently from the benchmarks schedules. So, when creating
a new schedule, the user can select which ones will be tested during and after
each benchmark execution, and which actions (notifications) will be performed
in case their conditions are satisfied. This enables not only to fix problems that
have caused SLA violations, but also treat threats before they become a real
violations.

Each event contains a logical expression that adopts a Java like syntax. It
supports all Java arithmetic, relational and logical operators [17]. Additionally,
it supports the relational operator matches that tests if a text string matches a
regular expression, as shown in Expression 4.

www.manaraa.com

8 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

Besides constant numbers and text strings, benchmark properties and statisti-
cal functions can also be used as operands. Benchmark properties follow the
pattern shown in Expression 1, with the benchmark name written without spaces,
followed by a property name. Table 1 lists the properties used in the following
examples. For a complete list of properties, please visit: jawari.net/help.

Table 1. Benchmark properties

Property Description

value latest result in the proper measurement unit
success latest percentage of successful executions (on different resources)
errorMessage text string with the latest error messages (empty if none)
values(n) collection of the past n results
successes(n) collection of the past n success rates

Some properties like values(n) and successes(n) return collections of val-
ues. They are used as arguments for statistical functions, namely avg() (arith-
metic mean), median(), max() (maximum value), min() (minimum value),
stddev() (standard deviation) and mad() (median absolute deviation).

This mechanism permits a variety of possibilities for controlling the grid
services adherence to SLAs. The event of Expression 1 tests if a service is
still up and running, but not operational. If so, the notification could be the
execution of a remote script to restart the Job Manager.

SingleConnection.value == 1 && StaticSingleTask.success == 0 (1)

The example shown in Expression 2 checks if the availability of the bench-
marked service was lower than 80%, during the past 30 days. If so, the noti-
fication could be an email sent to a system administrator alerting of the SLA
violation.

avg(SingleConnection.values(30)) < 0.80 (2)

The Expression 3 checks if the job turnaround time of a Dynamic Single
Task is at least 10% higher than the median of the times registered by historical
executions of the same benchmark.

DynamicSingleTask.value > median(DynamicSingleTask.values()) ∗ 1.10 (3)

www.manaraa.com

Monitoring Service Level Agreements in Grids 9

The event of Expression 4 tests if the user is unauthorized to use a resource.
The notification could be an email sent to a VO administrator.

StaticSingleTask.errorMessage matches ”. ∗ User\snot\sauthorized. ∗ ” (4)

Events can also be based on custom benchmarks. Considering a user specified
benchmark named Whetstone that performs a series of floating-point operations,
the event shown in Expression 5 tests if the performance of the benchmarked
resource has ever been lower than 300 Mflop/s.

min(Whetstone.values()) < 300 (5)

Ultimately, Jawari allows real applications to be specified as custom bench-
marks for further execution with all the SLA monitoring support.

6. Conclusion

In this paper we presented a multi-platform and extensible grid benchmarking
service that provides the grid community with an instrumental tool for SLA
assessment, monitoring and enforcement in grid environments.

We intend to enrich the tool with more benchmarks, more statistical functions
and a mechanism capable of deriving the event conditionals from high level
SLA statements, in order to simplify SLA monitoring configuration. We also
intend to develop a QoS prediction tool, responsible for analyzing historical
results in the Repository and correlating parameters such as middleware system,
VO, execution time, site and resources with levels of QoS likely to be ob-
served in similar circumstances. This tool would improve the event notification
mechanism and consequently the SLA monitoring possibilities.

Jawari is part of the D-Grid initiative [16], and has been in production since
November 2006. Among the users are system administrators from several insti-
tutions, including the Leibniz Supercomputing Center (LRZ), the University of
Dortmund and the Karlsruhe Institute of Technology (KIT). Jawari benchmarks
have also allowed software developers and support teams from the OurGrid
and gLite communities to automatize tests and identify bugs in new releases
of their respective middleware systems. Additionally, it is being used as an
information provider for the scheduling algorithm employed by the MediGrid
application [10], and we are currently working on MDS aggregators to make
Jawari results accessible through the D-Mon Monitoring Service [18].

We encourage users to contribute to the project becoming independent de-
velopers. They have been fundamental for the project, making comments and

www.manaraa.com

10 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

suggestions of improvement and implementing new features. More information
can be obtained at the web site: jawari.net.

www.manaraa.com

Monitoring Service Level Agreements in Grids 11

References

[1] E. Oliveira. Jawari - A Grid Benchmarking Service. German E-Science Conference, May
2007.

[2] G. Chun, H. Dail, H. Casanova, and A. Snavely. Benchmark Probes for Grid Assessment.
Technical report, University of California, 2003.

[3] Bal, H. et al. Next Generation Grids 2: Requirements and Options
for European Grids - Research 2005-2010 and Beyond, 2004. URL:
ftp://ftp.cordis.europa.eu/pub/ist/docs/ngg2 eg final.pdf.

[4] M. Frumkin and R. F. V. Wijngaart. NAS Grid Benchmarks: A Tool for Grid Space Explo-
ration. In Proceedings of the 10th IEEE International Symposium on High Performance
Distributed Computing, 2001.

[5] A. Hoheisel and U. Der. An XML-based Framework for Loosely Coupled Applications
on Grid Environments. Technical report, Fraunhofer FIRST, Berlin, 2003.

[6] M. Hovestadt. Operation of an SLA-aware Grid Fabric. Journal of Computer Science,
2(6):550–557. 2006

[7] R. A. Kaizar, R. J. Al-ali, K. Amin, G. V. Laszewski, O. F. Rana, D. W. Walker, M. Hategan,
and N. Zaluzec. Analysis and Provision of QoS for Distributed Grid Applications. Journal
of Grid Computing, 2:163–182, 2004.

[8] C. Ragusa, F. Longo, and A. Puliafito. On the Assessment of the S-Sicilia Infrastructure:
A Grid-Based Business System. Grid Economics and Business Models (GECON 2008),
In Proceedings of the 5th International Workshop, pages 113–124, August 26, 2008.

[9] A. Sahai, S. Graupner, V. Machiraju, and A. Moorsel. Specifying and Monitoring Guaran-
tees in Commercial Grids through SLA. In Proceedings of the 3rd IEEE/ACM CCGrid,
2003.

[10] D. Sommerfeld, and H. Richter. A Novel Approach to Workflow Scheduling in MediGRID.
Technical report, Institut für Informatik, Technische Universität Clausthal, July 2009.

[11] W. Cirne, F. Brasileiro, J. Sauve, N. Andrade, D. Paranhos, E. Santos-Neto and R. Medeiros.
Grid Computing for Bag of Tasks Applications. In Proceedings of the 3rd IFIP Conference
on E-Commerce, E-Business and E-Government, 2003.

[12] M. Rambadt and Ph. Wieder. UNICORE - Globus Interoperability: Getting the Best of
Both Worlds. In Proceedings of the 11th International Symposium on High Performance
Distributed Computing (HPDC), Edinburgh, Scotland, IEEE Computer Society Press,
page 422, 2002.

[13] gLite Middleware. http://glite.web.cern.ch/glite.

[14] Globus Toolkit. http://www.globus.org.

[15] Unicore - Uniform Interface to Computing Resources. http://unicore.eu.

[16] D-Grid Initiative. http://www.d-grid.de.

[17] Java. Sun Microsystems. http://java.sun.com.

[18] D-MON: D-Grid Monitoring Service. http://www.d-grid.de/index.php?id=41.

[19] Linpack Benchmarks. http://www.netlib.org/linpack.

[20] Nagios Monitoring System. http://www.nagios.org.

www.manaraa.com

REACTIVE MONITORING OF

SERVICE LEVEL AGREEMENTS

Dalia Khader, Julian Padget
Department of Computer Science
University of Bath, United Kingdom
ddk20@bath.ac.uk

jap@bath.ac.uk

Martijn Warnier
Systems Engineering
Faculty of Technology, Policy and Management
Delft University of Technology
The Netherlands
m.e.warnier@tudelft.nl

Abstract Service Level Agreements require a monitoring system that checks that no party
violates the agreement. Current monitoring techniques either have a high perfor-
mance overhead or are not reliable enough. This paper proposes a new hybrid
monitoring system that we call reactive monitoring. It tries to balance the disad-
vantages of established monitoring techniques, in particular online and offline
monitoring. Online monitoring has a relatively high performance overhead and
offline monitoring does not identify all possible violations.

Reactive monitoring combines online monitoring, which is used for reactively
checking continuous SLA properties with a new passive monitoring scheme.
This scheme is used for monitoring discrete SLA properties. It is based on
cryptographic primitives that provide proof that either a certain stage in an
interaction has been reached correctly with all participants in compliance of the
service level agreements or that a violation has occurred. In the latter case the
violating party can be identified.

A theoretical analysis shows that in the worst case scenario this new approach
has the same overhead as online monitoring techniques and in most cases the
overhead will be significantly lower.

Keywords: Service Level Agreements, Reactive Monitoring, Passive Monitoring, Multi Party
Contract Signing Protocol, Aggregate Signatures, Violations

P. Wieder et al. (eds.), Grids and Service-Oriented Architectures for Service Level Agreements,
DOI 10.1007/978-1-4419-7320-7_2, © Springer Science+Business Media, LLC 2010

www.manaraa.com

14 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

1. Introduction

Service Level Agreements (SLAs) form an essential part of distributed com-
puting, in particular in environments such as grid, cloud and service oriented
computing. A SLA represents an agreement between a client and a provider in
the context of a particular service provision. SLAs can be between two (one-to-
one) or more (one-to-many, or many-to-many) parties. A SLA typically consists
of a number of Service Level Objectives (SLOs) that define Quality of Service
(QoS) properties for the agreed upon service. The preceding negotiation and
agreement of SLAs are outside the scope of this paper, but see for example [9,
14]for more on these subjects. These QoS properties need to be measurable and
must be monitored during the provision of the service that has been agreed in
the SLA.

Typically, an independent trusted third party (TTP) is used to monitor the
agreement. Two approaches can be distinguished for monitoring SLAs. The first
type is online monitoring [10–12]. This involves periodically testing whether
the agreement terms have been met by all relevant parties. The monitoring
interval can vary, depending on the agreement’s SLOs, but in general it has to
be quite small (of the order of seconds). A property such as network bandwidth,
for example, has to be monitored continuously if one wants to ensure that the
SLO is not violated. The other approach is offline monitoring. In this case all
interactions are recorded, typically at the client site [6], and securely logged
and stored by the monitor [4]. If a party to the agreed upon SLA thinks that the
terms have been violated, the log is examined to establish whether a violation
took place.

Both types of monitoring come at a cost. Online monitoring is hard to
implement in an efficient way. It has a relatively high performance overhead
and the monitoring system typically forms a bottleneck since all parties in all
interactions contact it throughout. The disadvantage of offline monitoring is the
need for storage and, more importantly, this type of monitoring cannot always
prove with certainty that a violation has taken place[11]. If, for example, the
network bandwidth at the client site drops, did this happen because the provider
violated the SLA or because the client is under a denial of service attack? Some
research, most notably by Jurca et. al. [10] has tried to extend monitoring
with reputation based mechanisms in order to fix this problem. But reputation
mechanisms have their own reliability problems [7].

This paper proposes a new monitoring technique that tries to balance the
trade-offs of the monitoring approaches discussed above. In the worst case
scenario the new hybrid approach has the same overhead as online monitoring
techniques and in most cases the overhead will be significantly lower. The
new technique depends on what we refer to as passive monitoring. Passive
monitoring is an offline monitoring scheme that uses cryptographic primitives

www.manaraa.com

Reactive Monitoring of Service Level Agreements 15

to provide proof that a certain stage of an interaction has been reached correctly,
i.e., without any of the parties violating the SLA. The proofs are exchanged
between the communicating parties without the help of a trusted third party.
The proposed reactive monitoring scheme is a hybrid approach to monitoring. It
combines online monitoring with the new (offline) passive monitoring scheme.
In the case that a dispute arises an (online) monitor is contacted. At this point
the parties either prove they have reached that stage correctly, in full compliance
with the SLA, by providing the most recent cryptographic primitive they have.
Or, alternatively, one of the parties is in violation, which can be proved from
the cryptographic primitive they present. The protocol used in exchanging these
primitives is called the service evidential protocol (SEP). In the case that no
violation was proven the parties have the option to renegotiate their monitoring
policy. At this point they can agree to use online monitoring for some fixed
time period before switching back to the passive monitoring scheme.

2. Preliminaries

This section describes two preliminaries used as building blocks for the
passive monitoring scheme.

2.1 Contract Signing Protocols

A contract signing protocol (CSP) is a cryptographic protocol that allows two
or more parties to exchange signatures on a contract such that no party receives
a signed contract unless all of them do, achieving what literature refers to as
fairness, as first proposed by Even [2]. The obvious solution to implement such
a protocol is to utilize a trusted third party (TTP) that collects a digitally signed
contract from all participants and redistributes or aborts. However, this solution
is not ideal since the TTP becomes a performance bottleneck. Two solutions
have been proposed in the literature in order to address this problem. The first
is to eliminate the involvement of the TTP [3], where the general idea is to
exchange signatures gradually. However, these solutions are nondeterministic,
which in most cases would be a problem for the signatories and is expensive in
terms of computation and communication. A second solution is to construct a
CSP while minimizing interaction with the TTP. An optimistic protocol only
depends on the TTP when there is a dispute. In other words the TTP is never
contacted if all signing parties are behaving in compliance with the protocol [4,
13]. For this paper we assume the usage of a CSP to finalize a service level
agreement and to support SEP. We leave the decision of which type of CSP to
use for future studies, but there are several candidates in the literature [4, 8].

In the remainder of this paper we will not distinguish between a trusted
third party and a monitor. All monitors are trusted third parties, for the sake of
readability we only speak of monitors in the sequel.

www.manaraa.com

16 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

2.2 Aggregate Signatures

An aggregate signature is a digital signature scheme that supports aggrega-
tion [1] and is one of the main building blocks for a SEP. Given n signatures
for n distinct messages from n different users, it is possible to merge them into
one single signature. The following are the algorithms:

Setup: Each user i has a public key pki and a secret key ski.
Sign: Using the message M and secret key ski as input create a signature
σi = S(M, ski)
Verify: Using the public key pki, the message M and the signature σi
as input verify a signature σi. V (σi,M, pki) = {accept, reject}. This
tells us whether σi was in fact created by user i.
Aggregate Signature: Having signature σ1, ..., σn as inputs create one
short signature. σ = A(σ1, ..., σn).
Verify Aggregation: Having several public keys pk1, ..., pkn, several
messages M1, ...,Mn and one aggregation σ verify the aggregation:
R(σ, pk1, ..., pkn,M1, ...,Mn) = {accept, reject}. Which tells us if all
signatures been created by their corresponding users.

3. Service Evidential Protocol

The service evidential protocol (SEP) is a protocol that allows for the collec-
tion of evidence of SLA compliant behavior of the communicating parties over
the period of their interaction. The general idea is to minimize the usage of the
monitoring system for SLA agreement. We start from a presumption of good
intentions by all parties to the SLA. However, if at any point one of the parties
suspects any of the other parties of non-compliance, it calls on the monitor
who is, by definition, trusted by all. At this point one of two situations can
occur: (i) one of the parties is in violation of the SLA. The monitor identifies
the violating party by inspecting the cryptographic signatures, aborts the service
and penalizes the offender. Appropriate penalties can be negotiated and be part
of the SLA [11]. Or, (ii) all parties are in compliance with the SLA and can
prove this by presenting the appropriate cryptographic signatures. In this case,
the parties can either renegotiate a new, possibly online, monitoring scheme or
can continue using passive monitoring.

So in the most optimistic outcome the monitor never gets involved. If a
dispute occurs, the violating party can be identified and penalized. In addition,
the parties can renegotiate the monitoring policy and revert to conventional
monitoring (i.e., offline or online depending on the service and SLA). This can
be done easily as long as the service provided is discrete and state based. Con-
tinuous QoS-like properties cannot be monitored in this manner. In Section 5
we discuss how passive and online monitoring can be combined in a hybrid

www.manaraa.com

Reactive Monitoring of Service Level Agreements 17

approach, reactive monitoring, that can monitor both discrete and continuous
properties.

The general idea of the protocol is as follows:
1. The service provider starts by sending the service encrypted with the moni-

tor’s public key to the client
2. The response of the client is a signature on the received ciphertext
3. On receiving the signed ciphertext, the service provider responds with an

encrypted service to the client
The client can verify that the receipt he has given out was on the service he
requested and the service provider has a signature of the client that provides
non-repudiation: the client cannot deny ordering the service.

We adopt the standard naming convention in the cryptographic literature and
refer to the service provider as Alice and the service client as Bob.

Consider the following example:

Scenario 1 Alice provides memory storage. Bob is interested in using Alice’s
service for a week. Alice and Bob sign a contract that states the SLA. The
contract indicates that to obtain memory storage Bob will need a password that
expires every day. The states of the interaction can be divided to seven stages in
which Bob asks every day for a new password from Alice. In the SLA agreement
both parties agreed on hiring Matilda as a passive monitor.

One can assume that the password is the service provided, and we notate it as
M to Bob. Alice has the key pair (pka, ska), Bob has (pkb, skb), and Matilda
has (pkm, skm). We refer to the encryption algorithm as E, the decryption
algorithm as D and the signing algorithm as S throughout the paper. The steps
are as follows:
1. Alice sends Bob the ciphertext C1 = E(M,pkm) and σa = S(C1, ska). If

Bob does not respond then Alice has not revealed any information because
the service is encrypted with Matilda’s key.

2.a Bob verifies σa then replies with sending Alice σb = S(C1, skb). σb
represents a receipt in the context of SEP (success).

2.b If Bob does not get a reply (σa), he can contact Matilda and she can recover
the service M (from the previous step). Matilda will at this point give
Bob the encrypted service C2 = E(M,pkb), which she can construct from
message C1. If Matilda establishes that M is not the service agreed upon in
the CSP, she signs an abort message to Bob and the algorithm halts (fail).

3. Alice on receiving the receipt σb can verify it and send Bob the encrypted
service C2 = E(M,pkb).

Figure 1 is a diagram presenting the above protocol.

www.manaraa.com

18 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

Alice Bob
C1 = E(M,pkm)
σa = S(C1, ska)

C1,σa−→
V (σa, C1, pka) = {accept, reject}

σb = S(C1, skb)
σb←−

V (σb, C1, pkb) = {accept, reject}
C2 = E(M,pkb)

C2−→
D(C2, skb) = M

Figure 1. Optimistic Approach - No monitor needed

4. Passive Monitoring Scheme

If two or more parties to a SLA decide to use a passive monitoring scheme
(PMS), they should specify the monitoring party to use in case of dispute. Once
the negotiation ends a contract signing protocol takes place. This serves to
finalize the agreement and helps identify violating parties in case of disputes.

We assume that the service level agreement is a set of states that occur one
after another. For example, if we are talking about memory storage as the type
of service, a state would be the amount of memory reserved for a certain party
over a certain time period. Each time the interaction reaches a new state the
parties run SEP and exchange receipts. Each entity aggregates the new receipt
with the old ones. If a dispute arises the monitor asks all parties to provide the
latest aggregated signature they have calculated and the latest encrypted service.

The aggregate signature will refer to the state the party has reached. If all
parties have reached the same state then the monitor concludes that all parties
are acting in compliance with the SLA and decrypt the ciphertexts received
and distribute them. The monitoring can then continue in passive manner.
Figure 1 presents the interaction between Alice and Bob when the monitor
Matilda is not contacted while Figure 2 demonstrates the interactions in case
the monitor is needed. Note that Aa is the aggregation by Alice throughout
the interaction, Ab is the signature aggregation by Bob during the interaction
and Chk(CSP) refers to checking the contract signing protocol to see what
services should have been provided at each state of the interaction.

Examining Figure 2 in detail, we see that Bob claims he has sent a receipt to
Alice but has not got the service he requested. He sends Matilda the ciphertext
and signature he got from Alice (C1, σa). Furthermore, he sends Matilda an
aggregate signature of his Ab indicating the state he has reached with Alice
in the interaction. He also sends a receipt copy σb to Matilda as proof of

www.manaraa.com

Reactive Monitoring of Service Level Agreements 19

Alice Matilda Bob
C1,σa,Ab,σb←−

Aa−→
abort,Penalize←− if(V (σa, C1, pka) = reject

abort−→
Else

D(C1, skm) = M̄
abort,Penalize←− Chk(CSP) and if (M̄ �= M) abort−→

Else
abort,Penalize←− Chk(CSP) and if (R(Aa, pk1, ..., pkn,M1, ...,Mn) = reject) abort−→

Else
abort←− Chk(CSP) and if (R(Ab, pk1, ..., pkn,M1, ...,Mn) = reject)

abort,Penalize−→
Else

abort←− if (V (σb, C1, pkb))
abort,Penalize−→

Else
σb←− E(M,pkb) = C2

C2−→
V (σb, C1, pkb)={accept, reject} D(C2, skb) = M

Figure 2. Monitor mediation required

good intention. Matilda asks Alice to provide her with an aggregate signature
too. Matilda can verify the signatures she got from both parties and decrypt
the message she got from Bob. She compares the service M , the state of
interaction, i.e., comparing aggregate signatures, and the receipts with the SLA
contract. If everything seems compatible with the contract, Matilda can assume
an unreliable connection between Alice and Bob. She then forwards the service
encrypted to Bob and Bob’s receipt is sent to Alice.

The proposed passive monitoring scheme uses asymmetric (public key)
encryption for all operations. This is expensive and not necessary. A typical
optimization would be to use public key encryption to establish the receipts
together with a session key and then use this key with a (cheaper) symmetric
encryption scheme or the actual (encrypted) service.

5. Reactive Monitoring Scheme

The passive monitoring scheme introduced in the previous section is not
able to monitor continuous QoS-like properties such as network bandwidth
or processing power. Additionally, we observe that some QoS properties, in
particular security, are very hard to monitor. None of the existing monitoring
techniques, including passive or reactive monitoring, is capable of dealing with
these. However, for continuous properties we propose a reactive approach. At
the moment that one of the parties to an SLA suspects that a continuous property
is violated it can contact an online monitor. Using continuous monitoring it
tries to establish if a violation has taken place. Since the offending party will
not be notified until after the inspection is performed, there is a reasonable
probability of detecting most violations in this way. Figure 3 illustrates the
complete reactive monitoring scheme.

www.manaraa.com

20 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

START
passive

monitoring

dispute
resolution

online
monitoring

FINISH
start finish

dispute no
violation

violation

violation
renegotiate

finish

Figure 3. State diagram of reactive monitoring scheme

Reactive

O
ve

rh
ea

d

Online

Time

I II III II

Figure 4. Expected overhead of online and reactive monitoring

The reactive monitoring scheme proposed in this paper tries to balance the
disadvantages of both online and offline monitoring. The advantage with respect
to offline monitoring should be clear: in contrast to offline monitoring, reactive
monitoring detects all occurrences of violations and can always identify the
offending party.

The advantage with regards to online monitoring is perhaps less clear. At
first glance reactive monitoring seems to be more expensive since it uses some
expensive cryptographic operations and also uses online monitoring as a sub-
part of its process. However, we argue that on average reactive monitoring
has a smaller performance overhead compared to online monitoring. Figure 4
displays a hypothetical view of the expected overhead over the time period of a
typical SLA. However, we have not represented offline monitoring costs on the
graph, because it is not clear to us to where to attribute the costs or how large
they should be at different times.

Three different phases can be distinguished:
Phase I: This is the initialization phase of the reactive monitoring scheme.
Several cryptographic operations have to be performed to use the passive

www.manaraa.com

Reactive Monitoring of Service Level Agreements 21

monitoring scheme, and its overhead will thus be higher than online
monitoring at this stage.
Phase II: Under normal circumstances online monitoring will on average
be more expensive than reactive monitoring. The reactive monitoring
scheme does not continuously inspect the provided service, but will only
occasionally forward and sign some service requests.
Phase III: If a (possible) violation is signalled by one of the parties the
monitor either (i) checks the credentials, for discrete SLA properties, to
determine if a violation has occurred and to identify the offending party
(if any), or (ii) an online monitor is used to determine retrospectively
if a continuous property has been violated. In this phase the reactive
monitoring scheme will again be more expensive than online monitoring.

We argue that on average phase II will be much more common then either
phase I or III. This will in particular be the case if the number of violations is
relatively low. From this we conclude that, when measured over a longer time
period, the cumulative cost of reactive monitoring will be lower than the costs
of online monitoring.

Obviously, this argument is only a first step towards a full analysis of the
difference in performance overhead between reactive and online monitoring.
For one thing, we have not defined what overhead exactly means: number of
used messages, cpu or memory usage or something else? We do believe that
reactive monitoring can be beneficial under typical situations and deserves fur-
ther research. Our next step is to implement the passive monitoring scheme and
compare its performance (overhead) with other approaches in different circum-
stances, possibly using some of the ALIVE (see http://www.ist-alive.eu)
scenarios as testbeds.

In summary, the reactive monitoring scheme is a hybrid approach that com-
bines passive monitoring, as introduced in Section 4, with online monitoring.
This combination should provide reliable monitoring with an overhead that is
smaller than with conventional online monitoring.

6. Conclusions

This paper introduces reactive monitoring: a monitoring paradigm that
combines classical online monitoring with a new passive monitoring scheme
based on aggregate contract signing protocols. A theoretical analysis of the new
monitoring scheme shows that in typical circumstances reactive monitoring has
a lower overhead than online monitoring. The next step is to implement the
reactive monitoring scheme and show through empirical experiments that the
overhead is indeed lower.

www.manaraa.com

22 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

Acknowledgments

This work is partially supported through the ALIVE project (FP7-IST-
215890)

References

[1] D. Boneh, B. Lynn, and H. Shacham. Short signatures from the weil pairing. Journal of
Cryptology, 17(4):297–319, 2004.

[2] S. Even. Protocol for signing contracts. In CRYPTO’81, pages 148–153, 1981.

[3] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Commun. ACM, 28(6):637–647, 1985.

[4] J. Garay, M. Jakobsson, and P. MacKenzie. Abuse-free optimistic contract signing. In
CRYPTO’99, LNCS, Vol. 1666, page 787, Springer, 1999.

[5] L. Gymnopoulos, S. Dritsas, S. Gritzalis, and C. Lambrinoudakis. GRID security review.
LNCS, pages 100–111, 2003.

[6] R. Jurca, B. Faltings, and W. Binder. Reliable QoS monitoring based on client feedback. In
Proceedings of the 16th international conference on World Wide Web, pages 1003–1012,
ACM Press New York, NY, USA, 2007.

[7] R. Kerr and R. Cohen. Smart cheaters do prosper: Defeating trust and reputation systems.
In Proceedings of the Eigth International Conference on Autonomous Agents and Multi-
Agent Systems, 2009.

[8] A. Mukhamedov and M. Ryan. Improved multi-party contract signing. In Financial
Cryptography and Data Security, LNCS, Vol. 4886, pages 179–191, Springer, 2007.

[9] A. Pichot, P. Wieder, O. Wäldrich, and W. Ziegler. Dynamic SLA-negotiation based
on WS-Agreement. Technical Report TR-0082, Institute on Resource Management and
Scheduling, CoreGRID - Network of Excellence, June 2007.

[10] F. Raimondi, J. Skene, and W. Emmerich. Efficient online monitoring of web-service
SLAs. In SIGSOFT ’08/FSE-16: Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering, pages 170–180, New York, USA,
2008.

[11] O. Rana, M. Warnier, T. B. Quillinan, and F. M. T. Brazier Monitoring and Reputation
Mechanisms for Service Level Agreements. In Proceedings of the 5th International
Workshop on Grid Economics and Business Models (GenCon), Las Palmas, Gran Canaria,
Spain, Springer, August 2008.

[12] A. Sahai, S. Graupner, V. Machiraju, and A. van Moorsel. Specifying and monitoring
guarantees in commercial grids through SLA. In Proceedings of the 3rd IEEE/ACM
International Symposium on Cluster Computing and the Grid, pages 292–299, 2003.

[13] B. Waidner and M. Waidner. Round-optimal and abuse-free optimistic multi-party contract
signing. In Automata Languages and Programming, LNCS, Vol. 1853, pages 524–535,
Springer, 2000.

[14] W. Ziegler, P. Wieder, and D. Battre. Extending WS-Agreement for dynamic negotiation of
Service Level Agreements. Technical Report TR-0172, Institute on Resource Management
and Scheduling, CoreGRID - Network of Excellence, August 2008.

www.manaraa.com

LESSONS LEARNED FROM IMPLEMENTING

WS-AGREEMENT

Dominic Battré, Matthias Hovestadt
Technische Universität Berlin, Germany
{dominic.battre, matthias.hovestadt}@tu-berlin.de

Oliver Wäldrich
Department of Bioinformatics
Fraunhofer Institute SCAI
53754 Sankt Augustin, Germany
oliver.waeldrich@scai.fraunhofer.de

Abstract WS-Agreement describes a protocol and structure for creating and representing
service level agreements. In order to remain domain independent, the authors
of the WS-Agreement specification have provided many extension points for
domain specific content. This creates high degrees of freedoms for programmers
to implement the specification. Many attempts to do this have been made in the
past. In this paper, we explain what we have learned from our own and other
projects’ attempts of implementing WS-Agreement. The paper presents a set
of guidelines how the features of WS-Agreement can be used in a sound way
that allows transferring large parts of the WS-Agreement logic into a generic and
domain-independent WS-Agreement framework.

Keywords: WS-Agreement, Modeling, Best Practices, Agreement Templates, Automatic
Evaluation

P. Wieder et al. (eds.), Grids and Service-Oriented Architectures for Service Level Agreements,
DOI 10.1007/978-1-4419-7320-7_3, © Springer Science+Business Media, LLC 2010

www.manaraa.com

24 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

1. Introduction

The WS-Agreement specification [1] of the GRAAP-WG (Grid Resource
Allocation Agreement Protocol Working Group) of the Open Grid Forum (OGF)
is a protocol that allows two parties to express and close electronic contracts.
In order to achieve this, WS-Agreement provides an XML Schema definition
that allows describing the content of Service Level Agreements (SLAs) and a
protocol with message definitions that can be used to agree on contracts. The
XML Schema provides information about the basic structure of agreements but
intentionally does not address the concrete and domain specific description of
the terms that parties want to agree upon. These so called term languages need
to be contributed by additional XML Schema definitions.

Several projects have (partially) implemented the WS-Agreement specifica-
tion during the recent years since it has become an OGF proposed recommenda-
tion. By inspecting the outcomes of these projects and also of our own attempts
to implement WS-Agreement1, we have discovered that most projects use only a
fraction of WS-Agreement. Our hypothesis is that this results from the problem
that WS-Agreement does not provide sufficient instructional information on
how to use it. Through the recent years we have found several non-obvious
ways to exploit WS-Agreement and to allow large parts of its logic to be shifted
into domain-independent frameworks, which significantly simplifies the use
of WS-Agreement for a specific application. Herein, we want to provide our
conclusions in the form of a set of best practices on how to use WS-Agreement.

The remainder of this paper is structured as follows: First, related work on
WS-Agreement is presented in section 2. Section 3 addresses the protocol used
to create agreements, and the structure of these agreements is then discussed in
section 4. Section 5 addresses agreement templates before section 7 concludes
the paper.

2. Related work

Early work on Service Level Agreements in the scope of Web Services and
Grid computing has been published Ludwig et al. in [2]. Their work culminated
in the WS-Agreement specification [1], which is currently a proposed recom-
mendation by the Open Grid Forum. Wieder et al. present in [3] a survey of
various WS-Agreement implementations, though at a rather conceptual level.
More technical details on attempts to implement WS-Agreement can be found in
papers by Hasselmeyer et al. [4] and Battré et al. [5]. The question of modeling

1The use of WS-Agreement in AgentScape, AssessGrid, BEinGRID Experiments 20, 22, and 25, BREIN,
JSS, and Phosphorus has been considered. Details can be found in an upcoming experience document of
WS-Agreement in the scope of the Open Grid Forum.

www.manaraa.com

Lessons Learned from Implementing WS-Agreement 25

SLAs with WS-Agreement has been discussed for example by Rana et al. [6]
and Battré et al. [7].

3. Protocol

Agreements that follow the WS-Agreement specification are always instanti-
ated between exactly two parties. These two parties take the roles of Agreement
Initiator and Agreement Responder. WS-Agreement does not prescribe which
role is taken by a customer and which role is taken by a provider. In most
projects investigated, however, the customer takes the role of the Agreement
Initiator.

The agreement creation process follows a very simple two step protocol:
First, the Agreement Initiator submits an agreement offer to the Agreement
Responder. Then the Agreement Responder makes an atomic decision whether
to accept this offer or to reject it and notifies the Agreement Initiator of its
decision. After this, an Agreement is either established or declined with an
exception. The Agreement Responder may not modify the agreement offer in
any way.

Two important aspects from this protocol are worth mentioning because they
contradict common expectations of an agreement protocol:

The agreement creation protocol is very simple consisting of just two
messages. After the Agreement Initiator has submitted its offer, it is
legally bound to this offer in case the Agreement Responder accepts it.
We have seen a frequent desire to either invert the order of commitment
(i. e. the desire that the offer sent by the Agreement Initiator is non-
binding, that it results in a counter-offer by the Agreement Responder to
which the latter is bound, and that the Agreement Initiator can commit
on this counter-offer) or to at least ask for non-binding offers, called
“invitations to treat”, where the Agreement Responder replies with a
counter-offer that it is generally willing to accept without asserting that
it maintains this willingness for any period of time. Neither of this is
supported by WS-Agreement as of now! The desire to invert the order
of commitment is motivated by various scenarios where for example
the provider needs to calculate the price before creating an agreement
or where co-allocation of several services is important. WS-Agreement
extensions that allow asking for invitations to treat are being developed
by the GRAAP working group. We suggest that, in order to circumvent
the problem of co-allocation, these mechanisms may be combined with
policies that allow a customer to create agreements but terminate those
for a small penalty within the first few seconds after their creation in
order to perform a roll-back.

www.manaraa.com

26 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

It seems desirable to negotiate an agreement by means of (several) rounds
of offers and counter-offers and to modify an accepted agreement at
runtime. Neither is supported by WS-Agreement as of now.

4. Structure of Agreements

The content of agreements expressed by means of WS-Agreement, i. e. terms
that express what is agreed upon, has been left open to support various domains.
The overall structure, however, is common amongst all agreements. It comprises
the context of agreements, mainly specifying the two parties involved, and a
set of guarantees for expressing what is guaranteed and what penalties and
rewards are given in case of violations or compliance. These two static parts
are followed by a set of agreement states that expose the runtime state of an
agreement. All this information is exposed as WS-Resource Properties and can
be summarized in a resource property document. The appendix of this paper
contains a sample SLA that explains and illustrates several of the best practices
discussed in the following.

4.1 Context

The Agreement Context (lines 4–13 of the sample SLA) comprises a defi-
nition of the parties involved in the agreement as well as metadata such as the
agreement duration. Furthermore, it provides an extension point for domain
specific meta data. We address here only the parties involved in the agreement.

WS-Agreement does not prescribe how the participating parties are identi-
fied. The parties could be natural persons (human beings), legal person (e. g.
companies, providers, virtual organizations (VO), etc.), but maybe also concrete
computing systems. Identity management is a broad topic of ongoing research
but for practical purposes we would recommend to just use distinguished names
as they are common in secure web service contexts. WS-Agreement does not
specify the use of signatures in agreements, but provides for example in the
agreement context freedom to add them.

4.2 Terms and States

The Agreement Terms make up the core of an agreement stating what is
guaranteed and what happens in case guarantees are adhered to or violated.

WS-Agreement provides two types of terms, Service Description Terms and
Guarantee Terms, as well as so called Service References and Service Properties.
These elements can be combined by the logical conjunctions “All”, “One or
More”, and “Exactly One” (see lines 16–98).

As it appears generally difficult to work with contracts that contain arbitrarily
nested logical conjunctions, we recommend transforming the logical expression
of terms into disjunctive normal form before deciding whether an agreement

www.manaraa.com

Lessons Learned from Implementing WS-Agreement 27

can be fulfilled and therefore accepted. This reduces the task to the simpler
problem of deciding whether at least one conjunctive clause can be fulfilled.
Most projects investigated did not allow disjunctions of terms.

In the following we will discuss Service Description Terms and their state rep-
resentation as Service Term States, followed by Service Properties, Guarantee
Terms, and Guarantee States.

The aptly named Service Description Terms (SDTs) describe the properties
of a service offered by the provider (usually Agreement Responder). Lines
18–40 of the sample SLA illustrate this. We recommend the following best
practices for Service Description Terms:

Service Description Terms should reuse structures of well respected
specifications such as JSDL for example (or one of its extensions JSDL-
POSIX, JSDL-SPMD, etc.) for the sake of interoperability, which is
otherwise difficult to achieve. Members of the GRAAP working group
of OGF might give useful hints, what has been used in the scope of
WS-Agreement in the past.
The Name attribute of a Service Description Term may carry a semantic
meaning that is agreed upon by the programmers developing the client
and server side implementations of WS-Agreement. By giving SDTs a
name, programmers can anticipate the structure and the meaning of a
SDT in the context of an SLA. This simplifies the handling of an SLA
on the provider side significantly because service terms can be selected
easily by their name and processed by handlers that are registered for the
respective SDT names.
WS-Agreement allows describing different facets of the same service in
individual Service Description Terms and linking those together by using
the ServiceName attribute of Service Description Terms. This allows
separation of concerns and simplifies re-negotiation in the future because
individual aspects of an agreement can be referenced and re-negotiated
individually.
For computational services, it is often preferable to describe what will
be delivered in terms of services, which encapsulate the logic of one or
more programs by a simple interface, than to allow JSDL-POSIX/SPMD
like access to the raw compute resources. The reason for this is the sheer
number of problems that can occur and make it difficult to decide who has
violated his guarantees. In particular a bad exit code of a user submitted
program does not indicate whether the input data or the software contains
an error, or whether the problem stems from hardware issues or the
operating system. By offering the execution of a service, a provider can
provide a tested service that performs input file validation and gain more
confidence to execute a program successfully. The provider promises a
correct result and the reason for incorrect results becomes less important.

www.manaraa.com

28 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

Therefore, in the scope of WS-Agreement, Service Grids appear simpler
to realize than Compute Grids. Furthermore, they simplify changing
providers because file system paths to executables for example are hidden
behind the service description.

Each Service Description Term possesses a runtime state (lines 105–124),
the so called Service Term State. It indicates whether the described aspect of
the service is not ready, ready, or completed. The definition of the Service Term
State provides an extension point that implementations should use to expose
additional runtime or monitoring data for the associated Service Description
Term. Even though this is not explicitly suggested by the WS-Agreement speci-
fication, our experience showed that this is the most reasonable point to expose
this data during SLA execution. Moreover, extensive runtime information is
of particular importance for the definition of guarantees and their service level
objectives. The example illustrates how this runtime information is included in
the Service Term State. Note that the user has requested a minimum CPU speed
of 2 GHz (line 33) but was given CPUs of 3 GHz clock rate (line 114).

The Service Description Terms do not make any guarantees by themselves.
The guarantees and consequences of adherence and violation are formulated in
Guarantee Terms. Before addressing those, we need to discuss Service Proper-
ties, as they constitute a central tool for guarantee description and evaluation.

Service Properties (line 41–65) allow the definition of variables. A variable
consists of an identifier, a metric, and a location expression. If Service Term
States expose the actual configuration or monitoring data of service aspects
as suggested above, this enables to refer to these values by newly introduced
variables as presented in the example. All resource properties of an Agreement
are summarized in a resource properties document upon which the location
expressions can be evaluated. Note the difficulty of using XPath expressions
with namespace prefixes. In order to bind namespace prefixes one can resort
for example to using XQuery or one could define static prefix bindings, which
means however that the SLA is not self-containing.

Given these variables, it is possible to express guarantees in the form of
Guarantee Terms using for example the Java Expression Language (JEXL),
any other expression language is possible as well, as shown in lines 66–96. A
WS-Agreement implementation could then just lookup the variable valuations
from the resource properties document and evaluate the JEXL expression using
a standard interpreter.

Note how the combination of JEXL expressions with variables can be used
to define qualifying conditions for Guarantee Terms as well as for determining
whether Guarantee Terms are fulfilled. Likewise they can be used to define
Value Expressions for penalties and rewards.

We want to point out two important topics in the context of SLA compliance.

www.manaraa.com

Lessons Learned from Implementing WS-Agreement 29

WS-Agreement does not allow an SLA to be violated. The SLA can be in
various states (see chapter 7.1 “Agreement States” of the WS-Agreement
specification [1]), but these indicate only position in the life-cycle of the
SLA. Only Guarantee Terms can be violated. We have seen a frequent
desire to express that an either the entire SLA is fulfilled or violated. This
can be modeled by aggregating several conditions into one guarantee as
shown in lines 73–78. These lines comprise the conditions that the job
starts after the earliest possible start time, terminates before the latest
possible finish time, and uses CPUs of at least the specified clock rate.
Note how the expression remains correct even if the job termination time
is not known, yet.
Penalties and Rewards carry an assessment interval defining the duration
over which a service level objective is observed. If a Service Level
Objective (SLO) always evaluates to true during this time, a reward is
paid; otherwise a penalty is paid. After that the monitoring continues. It is
often desirable that a penalty is paid only once: If an SLO is ever violated,
the SLA should be considered violated as well and a penalty shall be
paid. This can be modeled by an empty Service Level Objective that is
evaluated only once and bears a positive reward. This represents the fee
(reward) of the SLA. In addition to that, a compound SLO carries the
guarantees and a penalty. In order to express that the penalty is paid only
at the first time the SLO is violated, one can for example wrap the content
of the Value Expression of the Penalty with a custom <onlyOnce> tag
or use a Custom Business Value. Unfortunately, something like this has
not been standardized, yet.

The status of guarantees is exposed as Guarantee States to the user. Just like
the previous states, a user can query these states by means of the WS-Resource
Framework and subscribe to them by means of WS-Notification.

5. Templates

Templates play an important role in WS-Agreement for advertising what
kind of services and QoS a provider can offer and for automatically evaluating
whether the content filled into a template is valid. Even though often expected,
templates do not serve the purpose of telling the Agreement Initiator which
fields to fill very well but instead describe what the filled out template will look
like.

An Agreement Template is an extension of the regular Agreement structure
by so called Creation Constraints. A Creation Constraint consists of an XPath
or XQuery pointing to elements within the agreement and an XML Schema
definition for elements located at these positions. By means of XML Schema
validation it is possible to automatically determine whether an Agreement

www.manaraa.com

30 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

complies with the Creation Constraints. The following example shows how this
mechanism may be used to limit requests to ask for only one or two CPUs in
each node.

<wsag:Item wsag:Name="JobDefinition_JobDescription_Resources_\
IndividualCPUCount_Exact@JOB_DESCRIPTION">

<wsag:Location>
declare namespace jsdl=’...’; declare namespace wsag=’...’;
$this/wsag:AgreementOffer/wsag:Terms/wsag:All/
wsag:ServiceDescriptionTerm[@wsag:Name=’JOB_DESCRIPTION’]/
jsdl:JobDefinition/jsdl:JobDescription/jsdl:Resources/
jsdl:IndividualCPUCount/jsdl:Exact

</wsag:Location>

<wsag:ItemConstraint>
<xs:minInclusive value="1" xmlns:xs="..."/>
<xs:maxInclusive value="2" xmlns:xs="..."/>

</wsag:ItemConstraint>

</wsag:Item>

Note how difficult it is to automatically extract the information that this creation
constraint limits the number of CPUs in each node. This underlines one of our
central claims:
The structure of Agreement Templates needs to be known to Agreement Ini-
tiators and Agreement Responders. A programmer could explicitly look up
the range of numbers of CPUs by evaluating two XPath expressions on the
Agreement Template, present this range to the user in some graphical user
interface, and store the entered value at the correct location in the agreement
offer. This requires however that the programmer knows the structure (not
the concrete values) of the Agreement Template in advance. The structure
tells where range limits can be found and where concrete values shall be filled
in. As each Agreement Template carries an identifier, it is possible to version
templates and provide this information. Similarly, the provider needs to know
the structure of the Agreement Template and thereby the structure of incoming
agreement offers to be certain whether it can fulfill these offers and that a user
does not request something impossible. The Creation Constraints are a means
to automatically check that only valid options are requested in the agreement
offer and that the agreement offer follows a structure that can be interpreted by
the provider.

A different approach to customize agreement offers is to use Exactly One
statements in the Agreement Template and ask the user to pick one option and
replace the Exactly One statement by this option. This modifies the Agreement
structure however. Therefore, it is even more important to guard this by suitable
Creation Constraints.

www.manaraa.com

Lessons Learned from Implementing WS-Agreement 31

6. Conclusion

WS-Agreement describes a protocol and structure to create and describe
service level agreements. In order to remain domain independent, the authors
of WS-Agreement have provided many extension points for domain specific
parts. Therefore, it is possible to make use of WS-Agreement in a virtually
infinite number of different ways. Investigations of various WS-Agreement
implementations have shown that many projects make use of only small portions
of WS-Agreement and large portions seem to be not well understood.

In this paper we have presented the hypothesis that both parties involved in a
WS-Agreement need to know the structure and meaning of a concrete Agree-
ment Template before writing software that requests the creation of agreements
and software that instantiates the service described by agreements that are based
on this template. Therefore, the created agreements necessarily follow a fairly
rigid structure described in the Agreement Template.

If Agreement Templates are designed according to the design guidelines
presented in this paper, it becomes possible to

automatically check whether an agreement offer is valid (by checking
Creations Constraints),
extract limits from the creation constraints and present them in a GUI for
the Agreement Initiator (by making use of named Agreement Templates
and named Creation Constraints with known structure),
automatically evaluate the fulfillment and violation of guarantees and bill
the parties for this (by valuating variables and evaluating guarantees).

These features can be implemented in a generic WS-Agreement engine and do
not need to be considered by a programmer implementing SLAs for a specific
domain. This shifts the focus to designing SLA templates. Besides that, the
remaining task of the programmer is to

instantiate services according to the agreement (rather simple due to the
known structure of the agreement) and
expose the actual properties of the agreement as WS-Resource Properties.

Example SLA

<wsag:AgreementProperties {namespace declarations}>
<wsag:Name>Weather Forecast Agreement, 2009−07−19</wsag:Name>
<wsag:AgreementId>8689d4f3−ae17−4234−bdbd−b814e7c7d6c6</wsag:AgreementId>
<wsag:Context>

<wsag:AgreementInitiator xsi:type="ns:DistinguishedName_Type">
/C=DE/O=GridGermany/OU=TU Berlin/OU=CIT/CN=Dominic Battre

</wsag:AgreementInitiator>
<wsag:AgreementResponder>...</wsag:AgreementResponder>
<wsag:ServiceProvider>AgreementResponder</wsag:ServiceProvider>
<wsag:ExpirationTime>2009−07−20T23:59:59.000+02:00</wsag:ExpirationTime>

www.manaraa.com

32 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

<wsag:TemplateId>AR_TEMPLATE_v1.0</wsag:TemplateId>
<wsag:TemplateName>Advanced Reservation Template</wsag:TemplateName>

</wsag:Context>

<wsag:Terms>
<wsag:All>

<wsag:ServiceDescriptionTerm wsag:Name="AR_TIME_CONSTRAINTS"
wsag:ServiceName="ARService">

<ar:AllocationTimeConstraint>
<ar:StartTime>2009−07−19T19:00:00.000+02:00</ar:StartTime>
<ar:EndTime>2009−07−20T19:00:00.000+02:00</ar:EndTime>

</ar:AllocationTimeConstraint>
</wsag:ServiceDescriptionTerm>
<wsag:ServiceDescriptionTerm wsag:Name="JOB_DESCRIPTION"

wsag:ServiceName="ARService">
<jsdl:JobDefinition xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl">

<jsdl:JobDescription>
<jsdl:Application>

<jsdl:ApplicationName>weather−forecast</jsdl:ApplicationName>
<jsdl:ApplicationVersion>1.0</jsdl:ApplicationVersion>

</jsdl:Application>
<jsdl:Resources>

<jsdl:IndividualCPUSpeed><jsdl:LowerBoundedRange>2.0E9</...></...>
<jsdl:IndividualCPUCount><jsdl:Exact>2.0</jsdl:Exact></...>
<jsdl:TotalResourceCount><jsdl:Exact>16.0</jsdl:Exact></...>
<jsdl:TotalCPUTime><jsdl:Exact>72000</jsdl:Exact></...>

</jsdl:Resources>
</jsdl:JobDescription>

</jsdl:JobDefinition>
</wsag:ServiceDescriptionTerm>
<wsag:ServiceProperties wsag:Name="Service_Properties_1"

wsag:ServiceName="ARService">
<wsag:VariableSet>

<wsag:Variable wsag:Name="REQ_CPU_SPEED" wsag:Metric="xs:integer">
<wsag:Location>

declare namespace jsdl=’...’; declare namespace wsag=’...’;
$this/wsag:AgreementProperties/wsag:Terms/wsag:All/
wsag:ServiceDescriptionTerm[@wsag:Name = ’JOB_DESCRIPTION’]/
jsdl:JobDefinition/jsdl:JobDescription/jsdl:Resources/
jsdl:IndividualCPUSpeed/jsdl:LowerBoundedRange

</wsag:Location>
</wsag:Variable>
<wsag:Variable wsag:Name="ACT_CPU_SPEED" wsag:Metric="xs:integer">

<wsag:Location>
declare namespace jsdl=’...’; declare namespace wsag=’...’;
$this/wsag:AgreementProperties/
wsag:ServiceTermState[@wsag:termName=’JOB_DESCRIPTION’]/
jsdl:JobDefinition/jsdl:JobDescription/jsdl:Resources/
jsdl:IndividualCPUSpeed/jsdl:Exact

www.manaraa.com

Lessons Learned from Implementing WS-Agreement 33

</wsag:Location>
</wsag:Variable>
{ further variable definitions: REQ_START_TIME, ACT_START_TIME,

REQ_END_TIME, ACT_END_TIME, JOB_EXECUTION_STATE }
</wsag:VariableSet>

</wsag:ServiceProperties>
<wsag:GuaranteeTerm wsag:Name="OVERALL_GUARANTEE">

<wsag:ServiceScope wsag:ServiceName="ARService"/>
<wsag:QualifyingCondition>

(JOB_EXECUTION_STATE eq ’Ready’) or
(JOB_EXECUTION_STATE eq ’Complete’)

</wsag:QualifyingCondition>
<wsag:ServiceLevelObjective>

<wsag:CustomServiceLevel>
(REQ_START_TIME le ACT_START_TIME) and
(empty(ACT_END_TIME) or

(ACT_END_TIME le REQ_END_TIME)) and
(REQ_CPU_SPEED le ACT_CPU_SPEED)

</wsag:CustomServiceLevel>
</wsag:ServiceLevelObjective>
<wsag:BusinessValueList>

<wsag:Penalty>
<wsag:AssessmentInterval>

<wsag:TimeInterval>P5M</wsag:TimeInterval>
</wsag:AssessmentInterval>
<wsag:ValueUnit>EUR</wsag:ValueUnit>
<wsag:ValueExpression>5</wsag:ValueExpression>

</wsag:Penalty>
<wsag:Reward>

<wsag:AssessmentInterval>
<wsag:TimeInterval>P5M</wsag:TimeInterval>

</wsag:AssessmentInterval>
<wsag:ValueUnit>EUR</wsag:ValueUnit>
<wsag:ValueExpression>10</wsag:ValueExpression>

</wsag:Reward>
</wsag:BusinessValueList>

</wsag:GuaranteeTerm>

</wsag:All>
</wsag:Terms>

<wsag:AgreementState>
<wsag:State>Observed</wsag:State>

</wsag:AgreementState>

<wsag:ServiceTermState wsag:termName="JOB_DEFINITION">
<wsag:State>Ready</wsag:State>
<jsdl:JobDefinition xmlns:jsdl="http://schemas.ggf.org/jsdl/2005/11/jsdl">

<jsdl:JobDescription>

www.manaraa.com

34 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

<jsdl:Application>
<jsdl:ApplicationName>weather−forecast</jsdl:ApplicationName>
<jsdl:ApplicationVersion>1.0</jsdl:ApplicationVersion>

</jsdl:Application>
<jsdl:Resources>

<jsdl:IndividualCPUSpeed><jsdl:Exact>3.0E9</jsdl:Exact></...>
<jsdl:IndividualCPUCount><jsdl:Exact>2.0</jsdl:Exact></...>
<jsdl:TotalResourceCount><jsdl:Exact>16.0</jsdl:Exact></...>
<jsdl:TotalCPUTime><jsdl:Exact>69932</jsdl:Exact></...>

</jsdl:Resources>
</jsdl:JobDescription>

</jsdl:JobDefinition>
</wsag:ServiceTermState>

<wsag:ServiceTermState wsag:termName="AR_TIME_CONSTRAINTS"> ...
</wsag:ServiceTermState>

</wsag:AgreementProperties>

Acknowledgments

We would like to thank Michael Parkins for the fruitful discussions about
commitments in the negotiation process and the various authors of implementa-
tions of WS-Agreement.

This work is supported by the German Federal Ministry of Education and
Research (BMBF) under grants No. 01IG09013 and No. 01IG07005 as part of
the D-Grid initiative.

References

[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Kakata, J. Pruyne,
J. Rofrano, S. Tuecke, S., and M. Xu. Web Services Agreement Specification (WS-
Agreement). Technical report, Open Grid Forum, 2007.

[2] H. Ludwig, A. Dan, and R. Kearney. Cremona: An Architecture and Library for Creation
and Monitoring of WS-Agreements. In ICSOC ’04: Proceedings of the 2nd international
conference on Service oriented computing, pages 65–74, 2004.

[3] P. Wieder, J. Seidel, O. Wäldrich, W. Ziegler, and R. Yahyapour. Using SLA for Resource
Management and Scheduling - A Survey. In Grid Middleware and Services, pages
335–347, 2008.

[4] P. Hasselmeyer, H. Mersch, B. Koller, H.N. Quyen, L. Schubert, and Ph. Wieder. Imple-
menting an SLA Negotiation Framework. In Exploiting the Knowledge Economy - Issues,
Applications, Case Studies, 2007.

[5] D. Battré, O. Kao, and Voss. Implementing WS-Agreement in a Globus Toolkit 4.0
Environment. In Grid Middleware and Services, pages 409–418, 2008.

[6] O. Rana, M. Warnier, T.B. Quillinan, F. Brazier, and D. Cojocarasu. Managing Violations
in Service Level Agreements. In Grid Middleware and Services, pages 349–358, 2008.

[7] D. Battré, G. Birkenheuer, V. Deora, M. Hovestadt, O. Rana, and O. Wäldrich. Guarantee
and Penalty Clauses for Service Level Agreements. In Proceedings of the 8th Cracow
Grid Workshop, 2008.

www.manaraa.com

SLA-AWARE RESOURCE MANAGEMENT

Yih Leong Sun, Ron Perrott, Terence J Harmer, Christina Cunningham, Peter
Wright
Belfast e-Science Centre, The Queen’s University of Belfast,
Belfast BT7 1NN, UK
{yl.sun,r.perrott,t.harmer,c.cunningham,p.wright}@besc.ac.uk

John Kennedy, Andy Edmonds, Victor Bayon, Jacek Maza
Intel Innovation Centre, Intel Ireland Limited (Branch),
Collinstown Industrial Park, Leixlip, Kildare, Ireland
{john.m.kennedy,andrewx.edmonds,victorx.m.molino,jacekx.maza}@intel.com

Gregor Berginc, Primož Hadalin
XLAB d.o.o.,
Pot za Brdom 100, SI-1000 Ljubljana, Slovenia, EU
{gregor.berginc,primoz.hadalin}@xlab.si

Abstract The management of infrastructure resources in a large-scale environment such
as Grid Computing is a challenging task and places significant demands on re-
source discovery, scheduling and the underlying communication channels. The
fulfillment of the business goals and service quality in such an environment
requires an infrastructure to cope with changes in demand and infrastructure
performance. In this paper, we propose an abstract service-oriented framework
for SLA-aware dynamic resource management. The framework provides self-
managing, self-configuration and self-healing strategies in order to support auto-
nomic and ambient service management. We study an SLA negotiation process
at the infrastructure resource layer, live migration for resource re-provisioning,
a multi-layer architecture framework to monitor infrastructure resources and
a harmonized interface to access arbitrary sources of infrastructure resources
based on SLA requirements. Resource usage will be optimized according to the
provider policies and SLA requirements.

Keywords: Service Level Agreement, Resource Management, Resource Monitoring, Service-
oriented Infrastructure, SLA Negotiation.

P. Wieder et al. (eds.), Grids and Service-Oriented Architectures for Service Level Agreements,
DOI 10.1007/978-1-4419-7320-7_4, © Springer Science+Business Media, LLC 2010

www.manaraa.com

36 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

1. Introduction

The convergence of Service-Oriented Architecture (SOA), Grid computing
and Virtualization is creating a critical point for the IT infrastructure resource
management. Grid computing allows pooling of computing resources such as
computing power and data storage dynamically from different organizations at
different geographical location. Virtualization allows for resource optimization
by running multiple virtual machines on a single physical under-utilized ma-
chine. Infrastructure as a Service (IaaS) is a model that allow a service provider
to deliver the raw computing power to the service consumer on demand over
the internet through a self-service frontend.

The management of infrastructure resources, either physical or virtual, in
such a large-scale environment is a complex and challenging task. The fulfill-
ment of the business Service Level Agreement (SLA) requires the infrastructure
to cope with changes in demand and infrastructure performance. IT infrastruc-
ture must be capable of adding new resources over time, resilient to failure
and provide a recovery mechanism. Infrastructure capabilities such as high
availability, adaptability, scalability, interoperability, performance, monitoring
and integration are of paramount importance. Commercial infrastructure service
provider such as Amazon Elastic Compute Cloud (EC2) [1], GoGrid [2] and
Flexiscale [3], provide different proprietary management interfaces to manage
their own infrastructure resources. Managing different providers in a harmo-
nious way is a challenging task even though there has been much work on
harmonization within the Grid computing area. SLAs offered from the commer-
cial infrastructure service providers are not dynamic, typically non-negotiable,
not machine readable and are generally under a standard SLA term. These
SLAs tend not to be pro-actively monitored and lack of automated execution of
penalties and charge-back.

Our work focuses on the management of infrastructure resources such as
computers, networks and storage with an SLA-awareness capability. We aim to
solve many of the previously mentioned problems that are exhibited by today’s
IaaS providers. It will enable an Service-Oriented Infrastructure (SOI) to be
mapped to a physical infrastructure and SLAs to be enforced at the resource
level. We propose a resource specification that enables the determination of
virtual resource requirements in support of SLA negotiation and a harmonized
interface to manage heterogeneous compute resources from different computing
resource providers. We also propose a virtual machine monitoring component
which enables the infrastructure to cope with failure and to meet the SLA
requirements. SLA-awareness at the infrastructure service layer enables the
identification and triggering of enforcement decisions to protect SLAs, and
the ability to carry out dynamic re-provisioning resulting in better service and
increased efficiency.

www.manaraa.com

SLA-aware Resource Management 37

1.1 Paper Organization

The remainder of this paper is organized as follows. In Section 2 we present
an overview architecture of the infrastructure management framework. In Sec-
tion 3 we propose a negotiation mechanism at the infrastructure layer. In Section
4 we present the provisioning and re-provisioning process for the infrastructure
resources. In Section 5 we propose a multi-layer resource monitoring mecha-
nism. In Section 6 we study some of the related work. Section 7 concludes with
a brief summary and details of future work.

2. Architecture Overview

In this section, we describe the Infrastructure Management architecture of
the SLA@SOI framework [4] and the relevant components. Given the distinct
responsibilities of the various components within the architecture and to achieve
scalability and flexibility, a generic agent-based architecture in combination with
asynchronous communication mechanisms (messaging bus) is implemented. To
allow communications to route to individual agents, and to distinguish between
arbitrary message types, it was observed that assigning one message-bus channel
per message type was appropriate. An overview of the architecture component
diagram is illustrated in Figure 1.

Figure 1. An Overview of Architecture Components

www.manaraa.com

38 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

The Infrastructure Management Service provides a customer facing exter-
nal interface for registration, provisioning, redeployment and management
functionalities.

The Abstract Infrastructure Framework Model is used for describing required
infrastructure resources and can accommodate infrastructure constraints defined
in higher-level business SLAs.

The Infrastructure SLA Translation converts a provisioning request into
an Abstract Infrastructure Framework Representation. This could potentially
support requests in multiple formats.

The Infrastructure Deployment Planner analyses requests and converts them
into individual virtual resource requirements and corresponding software images.
It checks if these resources can be provisioned and reserves these resources for
a short duration.

The Infrastructure Negotiation Workflow uses the Infrastructure SLA Trans-
lation and Infrastructure Deployment Planner to see if resources can be provi-
sioned. The customer may or may not decide to proceed with the provisioning.

The Provider Management component provides a plug-in management sys-
tem for communicating and controlling resource providers using a consistent
abstracted interface. It performs the provisioning and re-provisioning as re-
quired.

The Autonomic Management (Optimisation) component sends a request
to the Deployment Planner to perform redeployment preemptively based on
potential SLA violations identified by the Monitoring component.

The Monitoring component receives events from internal or external resource
providers, standardizes them and stores them in a historical repository. It reviews
the historical repository, correlates raw events, identifies escalations including
potential and actual SLA violations, and forwards them to subscribers. It will
store this information in an historical repository and may expose it depending
on the SLA.

The Prediction Services will be used by the Infrastructure Deployment Plan-
ner to predict the actual resources required based on historical and any other
information available.

The Infrastructure Landscape forms a representation of all currently running
physical and virtual infrastructure resources which are under the control of the
Infrastructure Provider. All attributes of registered infrastructure resources can
be queried. Physical and virtual infrastructure resources must be registered here
upon activation.

3. SLA Negotiation

Within the Negotiation module, infrastructure is offered by way of a provi-
sioning service. Each successful provisioning of infrastructure is guaranteed by

www.manaraa.com

SLA-aware Resource Management 39

the SLA specified by the customer. We introduce a template based on the WS-
Agreement specification for reserving resources (i.e. establishing agreements),
which is customized to size the infrastructure provisioning request according to
application requirements.

This template defines the necessary constructs without setting any constraints
on the requested values of SLA for the infrastructure. The template includes
default values which would typically be modified as part of an agreement offer.
It is up to the infrastructure planner to decide whether the values submitted
as part of an agreement offer (that was produced based on this template) are
acceptable or not.

The Negotiation module would extract the necessary SLA terms and submit
them as an argument to the provisioning request. If the request is accepted,
an SLA would be established. A provisioning request that has been submitted
and agreed upon is deemed to be an infrastructure SLA (iSLA). Our notion
of what an iSLA consists of is a vector of three core attributes; a set of terms,
a set of Service Level Objectives (SLOs) and a set of rules. The set of terms
dictate the resource specifications, a virtual machine in this case, and includes
the functional and non-functional attributes that will govern the creation of the
requested resource. The set of SLOs are the metrics that are to be monitored by
the Monitoring component. These SLOs can be directly or indirectly related to
the set of terms. Finally the set of rules are conditional actions to be taken upon
the state change of one or more of the SLOs. An iSLA can be submitted in
isolation and equates to one resource provisioning request. iSLAs can be com-
bined in order to form a request that equates to multiple resource provisionings
per agreement.

In a multi-round negotiation, where counter-offers may exist, the infrastruc-
ture needs to provide reasonable alternatives to provisioning requests that cannot
be satisfied. This may take place by adjusting some of the terms in the request,
by adding extra terms, or by removing some of the existing ones. As an example,
one may consider the case of a provisioning request of 2 VMs with CPU speed
set to 10 GHz (the Negotiation module does not filter the requests based on
their semantics, but rather only on the constraints of the templates used). This
request would of course fail due to unrealistic CPU speed requirements, and
it would be up to the infrastructure to facilitate negotiation by replying with a
counter-offer (e.g. 2 VMs with CPUSpeed = 1.5 GHz), instead of just rejecting
the request.

4. Resource provisioning and re-provisioning

Infrastructure Management needs to be able to interact with arbitrary sources
of infrastructure resources. These may be locally installed physical machines,

www.manaraa.com

40 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

which may or may not support some form of virtualization. Alternatively, the
infrastructure may be provided by remote providers such as Amazon EC2.

Following the approach of previous research work [5], we propose a har-
monized interface, the Provider Management interface, for heterogeneous vir-
tualized infrastructure services. We develop a technology neutral interface to
virtualization technologies which enables an abstract hardware environment to
be defined. The harmonized interface enables higher level services to remain
separate from details of the underlying technologies that are used in a physical
infrastructure, which will orchestrate a potentially unlimited set of infrastructure
resources.

The Provider Management interface provides a plug-in management system
for communicating with and controlling resource providers using the consistent
abstracted interface. Each resource, either local or remote, is manipulated via
an appropriate Resource Agent. The Resource Agent is customized for the
type of resource being controlled, be it a local hypervisor, or a remote infras-
tructure provider such as Amazon EC2. The Provider Management interface
communicates with the Resource Agents via a messaging bus, which is currently
implemented using the Extensible Messaging and Presence Protocol (XMPP)
[10].

The Provider Management interface currently provides five basic functionali-
ties, (1) to find suitable physical resources that satisfy the virtual resource SLA
requirements of the infrastructure provisioning request, (2) to reserve a virtual
resource on a physical resource, (3) to instantiate and start the virtual resource,
(4) to stop the virtual resources associated with the infrastructure provisioning
request, and (5) to re-adjust or re-provision the virtual resources according to
the SLA constraints.

A key benefit of having an Infrastructure Management layer is being able to
adjust and reprovision the infrastructure as required. This may be following a
request from the customer, or following some internal analysis and detection of
an opportunity for consolidation or avoiding an SLA violation.

The type of adjustment and reprovisioning supported depends on the type of
infrastructure technologies being used, and the architecture of the application or
service being hosted. Typical scenarios include “imaging" a virtual machine and
booting it up in an alternative virtual machine, perhaps on different hardware;
adjusting aspects of the virtual machine, e.g. the CPU allocation; and live mi-
gration, where a virtual machine can be transferred from one physical machine
to another, without any downtime for the users. If the application is partitioned
according to the Model/View/Controller approach, reprovisioning could simply
require the instantiation of additional Views (web servers) or Models (database
servers) depending on which component is under the most stress.

www.manaraa.com

SLA-aware Resource Management 41

4.1 Live Migration

Live migration is a particularly interesting form of re-provisioning as it
requires no downtime for the customer. For example, if the Autonomic Manage-
ment component detects an opportunity for consolidation of services without
affecting customer SLAs, live migration could be used to relocate the virtual
machines seamlessly if the providers being used support live migration.

However, live migration does not come for free and can temporarily reduce
the performance of hosted services during the migration process. The time
required to live-migrate can be significant, depending on the size of the virtual
machine and network bandwidth.

Some experimentation has been undertaken in order to profile the extra
impact that a live migration can have within the running time of virtual machines
and the infrastructure. From a host machine running a virtual image, we can
issue a command (such as “xm migrate") indicating which virtual machine to
migrate, and its destination. Assuming that the user doing the migration has the
correct credentials, the machine will be migrated. If the configuration of the
systems is correct, live migration will take as long as it takes for the memory
of the running virtual machine to be transferred from one system to the other.
In our example, a virtual machine with 512MB of memory was migrated in
approximately 49 seconds over a 100 Mbps network with almost no noticeable
impact on the running services inside the virtual machine.

5. Monitoring

An essential part of an SLA-aware infrastructure is a scalable and self-
sufficient monitoring system which is capable of monitoring large distributed
systems in real-time. The monitoring system must support two mutually exclu-
sive perspectives arising from the SLA, namely the customer’s perspective and
the infrastructure/service provider’s perspective. The former is interested in the
SLA alone, whilst the latter needs to be able to optimize the utilization of their
infrastructure.

To help process and manage the volume and variety of monitoring data, a
multi-layer monitoring architecture is used. The distributed multi-layer monitor-
ing architecture may be comprised of as many layers as necessary to support the
monitoring of the underlying infrastructure. However, these layers have been
divided into three logical layers, according to their primary purpose, amount of
input and output events, and degree of processing.

The lowest layer of the hierarchy, the data collection layer (L0), is mainly
used for the collection of raw input data. Basic filtering and pre-processing
of collected information can also be applied at L0 to reduce network traffic.
However, processing on L0 should be kept to a minimum to limit the monitoring
resource usage.

www.manaraa.com

42 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

The second logical layer is the event evaluation layer (L1) that supports the
integration of monitors into a cascade of increasingly more complex monitors,
ranging from simple metric checks to composed monitors. Composed monitors
re-use other monitoring agents to process complex rules, e.g. monitoring of an
entire cluster, taking the relationship between nodes in a cluster into account.

The top-most layer, named the service layer (L2), configures and defines
the meaning of monitoring events generated in lower layers of the architecture.
The architecture prevents top-level monitors from connecting to data collection
layer and bypassing the event evaluation layer. The L2 layer is a collection
of conceptually similar functions of L1 that provides the services used by any
service dealing with the infrastructure and receives inputs from layers below it.

5.1 Monitoring Virtual Machines

There is a need to monitor the provisioned virtual machines. There are
several potential sources for the L0 data, but each has its own advantages and
disadvantages. In our prototype implementation, we run a generic instrumenta-
tion framework like Ganglia [6] inside each virtual machine, and the resource
agent on the hypervisor communicates with it via the virtual network. This
requires the customer to install, configure and run Ganglia inside their virtual
machine, something that will consume some of their resources.

An alternative approach is to monitor the hypervisor hosting the virtual ma-
chines, but this only allows the data exposed by the hypervisor to be monitored.
Different hypervisors expose different data. Another approach is to install a
specific resource monitoring agent, including an instrumentation framework,
inside each virtual machine. This would allow maximum control over what is
monitored and where it is passed to, but this places some inconveniences to
the customer and consumes more resources of their virtual machine than the
previous approach.

6. Related Work

There are a few research projects in the area of resource management in SOA
or Grid environment. The NextGRID [7] project introduce a Conversion Factory
[9] to map the Service Level Agreements to Operational Level Agreement
and a Execution Management System to monitor the execution of the service.
SLA@SOI, however, argues for a comprehensive multi-level SLA management
framework [12–13] approach that spans across multiple stakeholders and layers
of a business/IT stack.

The RESERVOIR [8] project investigates technologies for advanced Cloud
Computing and is tasked to provide a software architecture where resources
and services can be transparently and dynamically managed, provisioned and
relocated virtually without borders. SLA@SOI and RESERVOIR have clearly

www.manaraa.com

SLA-aware Resource Management 43

distinct ambitions. RESERVOIR is focused on advanced infrastructure tech-
nologies supporting virtualization and their management across administrative
domains. SLAs are incorporated as a specific concern within the overall service
lifecycle management at the infrastructure level. It simply seeks to exploit
existing infrastructure technologies to bring more flexibility to the service pro-
visioning business. Whilst RESERVOIR follows a horizontal approach on
advancing infrastructure technologies, SLA@SOI follows a vertical approach
including the complete business/IT stack.

7. Conclusion and Future Work

As the requirements of SLA@SOI began to emerge, the Infrastructure Man-
agement architecture began to be formed and a preliminary proof of concept
prototype was developed. At this stage it was realized that the core functionality
concerning the SLAs of the infrastructure layer could be addressed indepen-
dently of the core infrastructure of the provisioning layer. This decoupling
allows high-level SLA modeling, management and negotiation concerns to be
processed largely independently of the evolution of the low-level infrastructure
management components.

Our future plans include supporting storage and networking resources, allow-
ing arbitrary customer groupings, introducing software and service concepts
in the infrastructure models, influencing Distributed Management Task Force
(DMTF) through suggested enhancements to the Open Virtualization Format
(OVF) [14] and etc.

A particularly important future plan will be the separation of SLA manage-
ment from the resource provisioning system, such that the SLA management
system can be used with any sort of provisioning system e.g. RESERVOIR,
Amazon EC2. By doing this we will be in a position to provide a system that
can SLA-enable most provisioning systems currently in use.

Acknowledgments

We would like to thank the teams at City University and SAP Research
for their work on the SLA-focused infrastructure. This work has been sup-
ported by the SLA@SOI project and has been partly funded by the European
Commission’s Seventh Framework Programme (FP7) under grant agreement
FP7-216556 addressing Objective 1.2 SSAI “Service and Software Architec-
tures, Infrastructures and Engineering". This paper express the opinions of the
authors and not necessarily those of the European Commission. The European
Commission is not liable for any use that may be made of the information
contained in this paper.

References

www.manaraa.com

44 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

[1] Amazon Elastic Compute Cloud. http://www.amazon.com/ec2

[2] GoGrid. http://www.gogrid.com

[3] FlexiScale, http://www.flexiscale.com

[4] The SLA@SOI project. http://www.sla-at-soi.eu/

[5] R. Perrott, T. Harmer and P. Wright. Provider-independent use of the cloud. In Proceedings
of Euro-Par 2009, LNCS, 2009.

[6] Ganglia. http://www.ganglia.info

[7] The NEXTGRID Project. http://www.nextgrid.org/

[8] The RESERVOIR project. http://www.reservoir-fp7.eu/

[9] P. Hasselmeyer, B. Koller, L. Schubert, and Ph. Wieder. Towards SLA-supported Resource
Management. In Proceedings of HPCC-06, Munich, Germany, LNCS, Vol.4208, pages
743-752, Springer, 2006.

[10] XMPP. http://www.xmpp.org

[11] E. Kalyvianaki, T. Charalambous, and S. Hand. Applying Kalman Filters to Dynamic
Resource Provisioning of Virtualized Server Applications. FeBid 2008, Third International
Workshop, Annapolis, Maryland, US.

[12] W. Theilmann, G. Zacco, M. Comuzzi, C. Rathfelder, C. Kotsokalis, and U. Winkler.
A Framework for Multi-level SLA Management. In Proceedings of Joint ICSOC &
ServiceWave 2009 Conference, Stockholm, Sweden, 2009.

[13] W. Theilmann, R. Yahyapour, and J. Butler. Multil-level SLA Management for Service-
Oriented Infrastructures. In Proceedings of the ServiceWave 2008 Conference, Madrid,
Spain, 2008.

[14] OVF. http://www.dmtf.org/standards/published documents/DSP0243 1.0.0.pdf.

www.manaraa.com

DISTRIBUTED TRUST MANAGEMENT FOR

VALIDATING SLA CHOREOGRAPHIES

Irfan Ul Haq
Department of Knowledge and Business Engineering, University of Vienna, Austria

Rehab Alnemr
Hasso Plattner Institute, Potsdam University, Germany

Adrian Paschke
Institute of Computer Science, Freie University Berlin, Germany

Erich Schikuta
Department of Knowledge and Business Engineering, University of Vienna, Austria

Harold Boley
Institute of Information Technology, National Research Council, Canada

Christoph Meinel
Hasso Plattner Institute, Potsdam University, Germany

Abstract

For business workflow automation in a service-enriched environment such as
a grid or a cloud, services scattered across heterogeneous Virtual Organizations
(VOs) can be aggregated in a producer-consumer manner, building hierarchical
structures of added value. In order to preserve the supply chain, the Service
Level Agreements (SLAs) corresponding to the underlying choreography of
services should also be incrementally aggregated. This cross-VO hierarchical
SLA aggregation requires validation, for which a distributed trust system becomes
a prerequisite. Elaborating our previous work on rule-based SLA validation, we
propose a hybrid distributed trust model. This new model is based on Public Key
Infrastructure (PKI) and reputation-based trust systems. It helps preventing SLA
violations by identifying violation-prone services at service selection stage and
actively contributes in breach management at the time of penalty enforcement.

P. Wieder et al. (eds.), Grids and Service-Oriented Architectures for Service Level Agreements,
DOI 10.1007/978-1-4419-7320-7_5, © Springer Science+Business Media, LLC 2010

www.manaraa.com

46 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

1. Introduction

A Service Level Agreement (SLA) is a formally negotiated contract between
a service provider and a service consumer to ensure the expected level of a
service. In a service enriched environment such as Grid, cooperating workflows
may result into a service choreography spun across several Virtual Organizations
and involving many business partners. Service Level Agreements are made
between services at various points of the service choreography. Not much
research has been carried out towards dynamic SLA composition of workflows
[2][3][7]. We have demonstrated [9]how a single-layer SLA composition model
is insufficient to comply with such a multilayered aggregation of services across
many Virtual Organizations and why only a hierarchical structure of SLAs
among different supply chain partners can fully describe its behavior. We have
introduced the concept of Hierarchical SLA Choreography [9] or simply SLA
Choreography, in accordance with the underlying Service Choreography as well
as the notion of SLA Views [9] to protect the privacy of business partners across
the supply chain. We have also demonstrated how SLA Views contribute to
the process of hierarchical SLA aggregation and how a rule-based top-down
validation process can be invoked across SLA choreographies [11].

In this paper we elaborate a hybrid distributed trust system based on PKI
and reputation-based trust models to enable our rule-based runtime validation
framework [11] for hierarchical SLA aggregations.

This paper discusses:

the justification and significance of a hybrid trust model for the validation
of hierarchical SLA aggregations in section 2,

the conceptual elements of our hybrid PKI and reputation based trust
model in section 3, and

a use case elaborating the breach management role of PKI and reputation
based trust model in connection with the SLA validation framework in
section 4.

Section 5 concludes the paper with a summary of the proposed model.

2. A Framework for Validation of Hierarchical SLA
Aggregations

Service choreography is usually distributed across several Virtual Organi-
zations and under various administrative domains. The complete aggregation
information of the SLAs below a certain level in the chain is known only by the
corresponding service provider and only a filtered part is exposed up towards the

www.manaraa.com

Distributed Trust Management for Validating SLA Choreographies 47

Rule based
Validation
Model for

Hierarchical
SLAs

Rule
Responder

Architecture

RBSLA
Components

SLA-Views
Distributed
Trust Model

Privacy
 Trust

Automation

Intelligence

Figure 1. Validation as a Cross-section of Models

immediate consumer. This is the reason why during the validation process, the
composed SLAs are required to be decomposed in an incremental manner down
towards the supply chain of services and get validated in their corresponding
service providers’s domain. A validation framework for the composed SLAs,
therefore, faces many design constraints and challenges: a trade-off between
privacy and trust, distributed query processing, and automation to name the
most essential ones. The aforementioned challenges bring in a cross-section of
models depicted in figure 1. In our proposed model, the privacy concerns of
the partners are ensured by the SLA View model [9], whereas the requirements
of trust and security can be addressed through a reputation-based trust system
built upon a distributed PKI (Public Key Infrastructure) based security system.
Additionally, we use Rule Responder [14] to weave the outer shell of the
validation system by providing the required infrastructure for the automation of
role description of partners as well as steering and redirection of the distributed
validation queries. The knowledge representation techniques of the RBSLA
(Rule based Service Level Agreements) project [5] contribute at the core of
validation system. Different parts of the WS-Agreement compliant SLAs can
be transformed into corresponding sets of logical rules, which are composed
together during the process of SLA composition and can be decomposed into
separate queries during the process of validation.

A view in an SLA Choreography represents the visibility of a business partner,
which in this case consists of a hierarchical collection of its SLAs both as a
producer and consumer. Every service provider is limited only to its own view.
In figure 2, two different views are highlighted in an example scenario where a
client requires to render and host his videos by using online web services. The
rendering and computing service S1 is restricted to its view and the client is
also shown here to have its own view. The central role during SLA aggregation

www.manaraa.com

48 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

GSLA

Rendering
Algorithm

Client’s
SLA-View

ap-client

Computing
Service

Video
Rendering
Service

Hosting
Service

ap-S1
ap-S2

Rendering Service’s
 SLA-View

Min(resolution)
(cost)

(response time)

SLO={B/W, Cost, Response-time, Resolution}

SLO={Cost, Response-time, Resolution}

Figure 2. Example Scenario for SLA Views

is played by small circles shown in the figure, known as aggregation points.
An aggregation point represents the control point of service provider. During
the aggregation process, terms of the SLAs below aggregation points (called
consumer-oriented SLAs) are aggregated within an aggregation point so that a
feasible SLA offer can be presented to the client above the aggregation point.
The whole SLA Choreography is seen as an integration of several SLA Views.
In [9], details of the rigorous formal model elaborating SLA views and various
aggregation patterns is elaborated. SLA-views can be implemented by using
Rule Responder architecture.

Rule Responder adopts the approach of multi agent systems. There are three
kinds of agents, namely: Organisational Agents (OA), Personal Agents (PA), and
External Agents (EA). An EA is an entity that invokes the system from outside.
A virtual organization is typically represented by an OA, which is the single (or
main) point of entry for communication with the "outer" world i.e. an external
agent. A PA corresponds to the SLA View of a service provider. Similar to an
organizational agent, each individual agent (personal and external) is described
by its syntactic resources of personal information about the agent, the semantic
descriptions that annotate the information resources with metadata and describe
the meaning with precise business vocabularies (ontologies) and a pragmatic
behavioral decision layer to react autonomously. The flow of information
is from External to Organisational to Personal Agent. In our scenario Rule
Responder provides the rule-based enterprise service middleware for highly
flexible and adaptive Web-based service supply chains.

Rule Responder utilizes RuleML [12] as platform-independent rule Inter-
change format and has the Mule open-source Enterprise Service Bus (ESB)
[13], as Communication Middleware and Agent/Service Broker to seamlessly

www.manaraa.com

Distributed Trust Management for Validating SLA Choreographies 49

handle message-based interactions between the responder agents/services and
with other applications and services.

As depicted in figure 1, the fourth component in our framework is a dis-
tributed trust model. We need to choose a suitable trust model that integrates
seamlessly with our aggregation and validation framework. Public Key Infras-
tructure (PKI) is a popular distributed trust model in Grids. Legitimate members
of a Grid are certified by a Certification Authority (CA).

During service choreography, services may form temporary composition
with other services, scattered across different VOs. The question of whose
parent VO acts as the root CA in this case is solved by including third party
trust manager like the case for dynamic ad hoc networks. The distributed
trust system should work hand-in-hand with the breach management of the
SLA validation framework. In case of SLA violation, in addition to enforcing
penalty, the affected party is likely to keep a note of the violating service in
order to avoid it in future. Moreover, a fair business environment demands even
more and the future consumers of the failing service also have a right to know
about its past performance. Reputation-based trust systems are widely used to
maintain the reputation of different business players and to ensure this kind of
knowledge. We propose a hybrid trust model based on PKI and reputation-based
trust systems to harvest advantages from both techniques. The main points of
the model are:

the PKI based trust model has a third party trust manager that will act
as a root CA and authenticate member VOs. These VOs are themselves
CAs as they can further authenticate their containing services.

Selection of services at the the pre-SLA stage is done by using reputation
to prevent SLA violation. Services reputation are updated after each SLA
validation process.

SLA views integrate very closely with the trust model to maintain a
balance between trust and security. While the trust model promises trust
and security, the SLA views protect privacy.

3. A PKI and Reputation-based Distributed Trust Model

Trust management can be categorized into: policy-based and reputation-
based management systems. The two approaches have been developed within
the context of different environments and targeting different requirements. On
one hand, policy-based trust relies on "strong security" mechanisms such as
signed certificates and trusted certification authorities in order to regulate the
access of users to services resulting in a binary decision i.e a party being trusted
or not trusted whereas on the other hand, reputation-based trust relies on a rather
"soft computational" approach where trust is typically computed from local

www.manaraa.com

50 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

experiences together with the feedback given by other entities in the network
(e.g., users who have used services of that provider). The two trust management
approaches address the same problem - establishing trust among interacting
parties in distributed and decentralized systems. However, they assume different
settings. While the policy based approach has been developed within the context
of structured organizational environments the reputation systems have been
proposed to address the unstructured user community [6].

The policy-based trust systems are very secure and hence are an essential
requirement for the B2B and B2C relationships in virtual organisations and for
this reason have been widely adopted in Grid Computing. On the other hand,
the reputation-based trust is a lenient approach and are very suitable for self-
emergent, automated, ad-hoc and dynamic business relationships across virtual
enterprises. In the line of our work, we take the best features of both approaches
and propose a PKI coupled Reputation-based Trust Management System. We
use Rule Responders’ agents to spawn trust across different stake-holders of a
cross-enterprise business relationship.

In the following sub-sections, we elaborate how the best features of both PKI
(policy-based approach) and reputation-based trust systems, along with Rule
Responder architecture, are utilized to our advantage.

3.1 Single Sign-On and Delegation

In the proposed model, a third party acts as a root CA. This third party trust
manager acts as a root Certification Authority (CA) and authenticates member
VOs. These VOs are themselves CAs as they can further authenticate their
containing services. Each member is given a certificate. Certificates contain
the name of the certificate holder, the holder’s public key, as well as the digital
signature of a CA for authentication. The authentication layer in each VO
middle-ware may be based on Grid Security Infrastructure (GSI) [8] where all
resources need to install the trusted certificates of their CAs. GSI uses X.509
[4] proxy certificates to enable Single sign-on and Delegation. With Single
Sign-On, the user does not have to bother to sign in again and again in order
to traverse along the chain of trusted partners (VOs and services). This can be
achieved by the Cross-CA Hierarchical [4] [8] Trust Model where the top most
CA, called the root CA provides certificates to its subordinate CAs and these
subordinates can further issue certificates to other CAs (subordinates), services
or users.

3.2 Reputation Transfer using Trust Reputation Center

In previous work [1], we have presented a reputation-based model that
facilitates reputation transfer. One of the main components of this model is
Trust Reputation Centers (TRC). It acts as a trusted third party. The TRC is a

www.manaraa.com

Distributed Trust Management for Validating SLA Choreographies 51

CA-VO1 CA-VO2 CA-VO3

Third Party Root
CA

a1 x1 a2 b2 x2 x3b3a3b1

TRC

OA1 OA2 OA3

PAs

Figure 3. The correspondence between the PKI and reputation based systems and to the Rule
Responder architecture

pool of users’ reputation gathered from different platforms. Each user, agent,
or service can have two values that define its reputation: an overall reputation
(trusted or non-trusted for malicious users), and a context-based reputation
object (RO). When two users from two different platforms (or organizations)
establish an interaction, the TRC can be used as a transparent trusted third party.
The hybrid system is currently implemented by extending the Rule Responder
architecture as shown in figure 3.

As depicted in figure 3, this reputation-based trust model has direct corre-
spondence with Rule Responder’s agents and their mutual communication. The
PAs consult OAs and OAs in return consult the TRC which is equivalent to the
third party CA in PKI based system. In the rest of the paper, we refer to the
channel direction flow between PA to OA to TRC, simply as communication
among agent.

The word agent in this context refers to a software representation or a smart
service. In [1] we illustrate how Agents can exchange lists of acquaintance
agents. An Acquaintance Agent List (AAL) is a list of all previously dealt
with trusted agents. Then the questioner agent cross-references the list with
its own trusted agents, extracts the common ones and issues an inquiry about
the agent in question. The answer is a Reputation Object (RO) that expresses
the reputation value given by each agent and the context related to this value.
The questioner analyzes the set of ROs and forms a decision whether to carry
out the transaction or not. There can be more than one ways to represent trust
(e.g. in form of numerical values) and hence there are multiple corresponding
interpretation or reference models. So when we recommend someone, the
name of the trust model can be used as a reference of what measures our
trust, and its degree is based upon. We have also proposed the development of
Reputation Reference Trust Models (RRTM) [1] that is used as a parameter
when mentioning trust. Reputation is viewed as an object that contains the

www.manaraa.com

52 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

TRC

RO[]a
RO[]b
RO[]c

.

.

.

RO[]x

OA-BOA-A
RO[]a
RO[]d

.

.

.

RO[]b
RO[]c

.

.

.

PA-a PA-c PA-b

RO[]a
RO[]d

.

.

.

RO[]a
RO[]d

.

.

.

RO[]a
RO[]d

.

.

.

RO[]c?

RO[]c?

Figure 4. Query of PA-a about reputation of PA-c to OA-A and then redirected to TRC

context related to each reputation value and reflects the dynamic nature of trust
and its change through time. Reputation object contains a multidimensional
array, a matrix, which represents the reputation linked with its context and the
RRTM used to calculate this value.

Object Reputation {

TrustMatrix [context][reputation value][RRTM];

Time ValidTime;

Credentials PresentedCredentials;}

In figure 4, PA-a that corresponds to service a that makes an SLA with an
unknown service c by checking first its credentials. For this purpose, it consults
its corresponding organistational agent, which is OA-A in this case. OA-A
too, does not have any information about service c’s reputation so it redirects
a’s query to the trust reputation center TRC which then transfers the required
reputation object tracing back the same channel.

4. Proposed Model via Use Case Scenario

Our final goal is to design a framework for the validation of hierarchical SLA
aggregations. We achieve this goal by using the hybrid trust system introduced
in Section 3. The processes involved in our model are:

Validation of complete SLA aggregation: to do this the validation query
is required to traverse through all the SLA views lying across hetero-
geneous administrative domains and get validated locally at each SLA
view. The multi-agent architecture of Rule Responder provides commu-
nication middle-ware to the distributed stake-holders namely the client,
the VOs, and various service providers. The validation process empow-

www.manaraa.com

Distributed Trust Management for Validating SLA Choreographies 53

ered by the single sign-on and delegation properties of the distributed
trust model, helps the distributed query mechanism to operate seamlessly
across different administrative domains.

Use of reputation in the selection phase: reputation transfer is required at
two stages: at service selection stage and at penalty enforcement stage. In
the process of service selection, the reputation transfer helps to select the
least violation-prone services, taking into account proactive measures to
avoid SLA violations. Out of all the available services, the client (which
is also a service in this case) first filters the best services complying
its "happiness criteria" [10]. Then the client compares the credentials
from reputation objects of the services. The reputation object is traced
as discussed in section 3.2. Then the client can select the best service
in accordance to its already devised criteria. We assume that out of
redundant services which fulfill client’s requirements, the service with
the highest reputation is selected.

Use of PKI and reputation in breach management: this hybrid Trust is
used in the breach management after an occurrence of SLA violation. In
figure 5, runtime validation of SLAs ensures that the service guarantees
are in complete conformance with the expected levels. Our previous work
discusses in detail [11]how the terms of aggregated SLA are represented
as logical rules following the RBSLA specifications. These rules are
composed together during the process of SLA aggregation [9].

In the scenario depicted in figure 2, the user is interested to render her videos
and then host them on the web. Her requirements in terms of Service Level
Objectives (SLOs) include a maximum cost of 45 €, maximum response time of
5 seconds, minimum resolution of 640x480 pixels and the minimum bandwidth
(from hosting service) of 50 Mbps. In figure 5, we have depicted this scenario
from validation point of view. The user-requirements are shown in the figure
above the head of EA, as a derivation rule whose premises are SLOs of the
aggregated SLA. The SLOs are a expresses as a conjuncted set of negated
premises of the derivation rule. The predicates lt and gt denote lesser-than
and greater-than respectively. The agents OA and PA representing the Rule
Responder architecture, are shown to automate the distributed query processing.
For the sake of simplicity, we outline the Rule Responder architecture just from
agent-oriented perspective, and abstract various essential details such as the
Rule-bases, the knowledge resources and the role of Enterprise Service Bus
(ESB).

During the validation process, this rule is decomposed such that each premise
will become a subgoal. This subgoal is sent as a message to the PA correspond-
ing to the next SLA view in the hierarchy where it emerges as a conclusion
of one of the rules in the local rule set, thus forming a distributed rule chain.

www.manaraa.com

54 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

SLO() :- ~gt(Cost,45,euro), ~gt(Rtime,5,sec), ~lt(Resol,640X480,pxls), ~lt(BW,50,mbps).

 ~gt(Rtime,5,sec) :- ~gt(Cmplxty,20,pts),~gt(CRtime,2,sec),
~gt(Datasize,30,mb),~gt(Latency,0.5,sec).

~gt(Rcost, 25, eur) :- ~gt(cost(Computation), 7,eur),
 ~gt (cost(Rendalgo), 11, eur).

Query (a)
Query (b)

(Distributed Query)

VO-B containng Rendering service
provider

VO-A containng Hosting service
provider

PLA
PA-x

EA

OA-A

~gt(Hcost, 20, eur) :- ~gt(cost(Hosting), 12,eur),
 ~gt(cost(LocalBW),3,eur)).

OA-B

PA-y

~lt(Resol, 640X480, pxls):- ~lt(Rresol, 640X480, pxls),
 ~lt(Hresol, 640X480, pxls).

Figure 5. Validation through distributed query decomposition

The initial steps of decomposition procedure are depicted at the bottom of the
figure. In the figure, OAs are shown to receive and track the distributed query
whenever it enters a new VO e.g. OA-B receives a subgoal ∼ gt(Rtime, 5, sec)
representing the requirement that the total response time of the system should
not be more than 5 seconds. For each service provider, there is a personal agent.
A PA, after finishing its job, reports to the corresponding OA that redirect the
distributed query to the service provider’s PA that comes next in the hierarchi-
cal chain. The single sign-on and delegation helps the backtracking to flow
smoothly across trusted partners. The process continues until the query has
found all the goals expressed in terms of logical rules or if there is a violation
at any step in the chain. Active rules tracking these goals or SLOs, are then
invoked locally within the administrative domains of the corresponding SLA
views. The true or false results are conveyed back following the same routes.
In case of a violation, an active rule is fired for the penalty enforcement. In
addition to a fine, the reputation of the service is also decreased by the client
service and the updated reputation objects is transferred to its corresponding
VO from where it is passed to the TRC. If an alternate service is required by the
client then the service can be recommended on the basis of its Reputation Object
by the corresponding VO, which also keeps track of other services falling in the
same category.

5. Conclusion and Future Work

In this paper, we presented the design of a hybrid trust management system
as part of validation framework of hierarchical SLA aggregations corresponding
to cross-VO workflow compositions. The trust system is based on PKI as
well as reputation based trust models thus providing a single sign-on and

www.manaraa.com

Distributed Trust Management for Validating SLA Choreographies 55

maintaining service credentials based on their SLA compliance. Although the
model presented here is strongly related to already existing trust models and
frameworks, the application of this model, as part of validation framework
of hierarchical SLA aggregations is innovative. We plan to implement this
hybrid trust model through iterative development phases as part of a distributed
rule-based validation system using RuleML/XML for interchange [9].

References

[1] R. Alnemr and Ch. Meinel. Getting More from Reputation Systems: A Context-Aware
Reputation Framework Based on Trust Centers and Agent Lists. Computing in the Global
Information Technology, ICCGI’08, pages 137–142, 2008.

[2] M.B. Blake and D.J. Cunnings. Workflow Composition of Service Level Agreements.
International Conference on Services Computing, 2007.

[3] G. Frankova. Service Level Agreements Web Services and Security. Springer Verlag,
pages 556–562, 2007

[4] A. Lioy, M. Marian, N. Moltchanova, and M. Pala. PKI past, present and future. Interna-
tional Journal of Information Security, Springer Berlin, pages 18–29, 2006.

[5] A. Paschke and M. Bichler. Knowledge Representation Concepts for Automated SLA
Management. Int. Journal of Decision Support Systems (DSS), March 2006.

[6] P. Bonatti, D. Olmedilla, C. Duma, and N. Shahmehr. An Integration of Reputation-based
and Policy-based Trust Management. Semantic Web and Policy Workshop, 2005.

[7] T. Unger, F. Leyman, S. Mauchart, and T. Scheibler. Aggregation of Service Level
Agreement in the context of business processes. Enterprise Distributed Object Computing
Conference Munich, Germany, 2008.

[8] S. Zhao, A. Aggarwal, and R.D. Kent. PKI-Based Authentication Mechanisms in Grid
Systems. International Conference on Networking, Architecture, and Storage, 2007

[9] I. Ul Haq, A. Huqqani, E. Schikuta. Aggregating hierarchical Service Level Agreements in
Business Value Networks Business Process Management Conference (BPM2009), 2009.

[10] K. Kofler, I. Ul Haq, and E. Schikuta. A Parallel Branch and Bound Algorithm for
Workflow QoS Optimization In Proceedings of the 38th International Conference on
Parallel Processing (ICPP2009), Vienna, 2009.

[11] I. Ul Haq, A. Paschke, E. Schikuta, and H. Boley. Rule-Based Workflow Validation of
Hierarchical Service Level Agreements In Proceedings of the 4th International Workshop
on Workflow Management (ICWM2009), Geneva, 2009.

[12] H. Boley. The Rule-ML Family of Web Rule Languages. In 4th Int. Workshop on
Principles and Practice of Semantic Web Reasoning, Budva, Montenegro, 2006.

[13] Mule. Mule Enterprise Service Bus. http://mule.codehaus.org/display/MULE/Home, 2006.

[14] A. Paschke, H. Boley, A. Kozlenkov, and B. Craig. Rule responder: RuleML-based agents
for distributed collaboration on the pragmatic web. In Proceedings of the 2nd international
conference on Pragmatic web Tilburg, The Netherlands, 2007.

www.manaraa.com

EVALUATION OF SERVICE LEVEL

AGREEMENT APPROACHES FOR

PORTFOLIO MANAGEMENT IN

THE FINANCIAL INDUSTRY

Tobias Pontz, Manfred Grauer
University of Siegen
Information Systems Institute
Hoelderlinstrasse 3
57076 Siegen, Germany
pontz@fb5.uni-siegen.de

grauer@fb5.uni-siegen.de

Roland Kuebert, Axel Tenschert, Bastian Koller
High Performance Computing Center Stuttgart
Nobelstrasse 19
70569 Stuttgart
kuebert@hlrs.de

tenschert@hlrs.de

koller@hlrs.de

Abstract The idea of service-oriented Grid computing seems to have the potential for
fundamental paradigm change and a new architectural alignment concerning the
design of IT infrastructures. There is a wide range of technical approaches from
scientific communities which describe basic infrastructures and middlewares for
integrating Grid resources in order that by now Grid applications are technically
realizable. Hence, Grid computing needs viable business models and enhanced
infrastructures to move from academic application right up to commercial appli-
cation. For a commercial usage of these evolutions service level agreements are
needed. The developed approaches are primary of academic interest and mostly
have not been put into practice. Based on a business use case of the financial
industry, five service level agreement approaches have been evaluated in this
paper. Based on the evaluation, a management architecture has been designed
and implemented as a prototype.

Keywords: Service-oriented Architecture, Service Level Agreement, Quality of Service, Grid
Computing, Financial Engineering, Portfolio Management.

P. Wieder et al. (eds.), Grids and Service-Oriented Architectures for Service Level Agreements,
DOI 10.1007/978-1-4419-7320-7_6, © Springer Science+Business Media, LLC 2010

www.manaraa.com

58 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

1. Introduction and Motivation

Being mostly used in academia, scientific Grid computing [1], [2] operates
on a best-effort basis for providing and using Grid resources as there are no
guarantees of delivered service quality. Moving into the business field, best-
effort is no longer sufficient. Even when Grid computing comes to delivering
services or making computations to solve complex problems, for which a
user may have paid a lot of money, new solutions are needed [3]. Service
Level Agreements (SLA) are an essential instrument for commercial service
providers to advertise the Quality of Service (QoS) and to manage contracts
throughout commercial Grid environments. A SLA is a contract between
a provider and a user of a negotiated service. It describes the performance
criteria a provider promises to meet while performing a service, states the
expectations and obligations that exist between the two parties and specifies
the conditions under which a service may be used, for instance, the level of
availability, serviceability and performance. Furthermore it sets out the rights
and commitments each party has in a particular context or situation, the remedial
actions to be taken and any penalties that will take effect if the performance
falls below the promised criteria.

The current paper arises from research work which evaluates five SLA
approaches in order to establish a SLA-based infrastructure on provider’s site.
The approaches cover the technical part of QoS and do not match the business
service management to improve QoS as presented in [4]. The evaluation leads
to a prototypical design and implementation of a SLA Management architecture
based on WS-Agreement [5] using the de facto standard Globus Toolkit [6].

At first, we present a business use case of the financial industry in chapter 2
and point out the need for a SLA-based infrastructure. Based on this use case, a
criteria catalog is specified in chapter 3 and five SLA approaches are evaluated
in chapter 4 for designing a prototypical infrastructure for the given use case
in chapter 5. We can just give a rough insight into the SLA Management
architecture. Finally, conclusions and future work are discussed in chapter 7.

2. Portfolio Management as Use Case taken from the
Financial Industry

To show the practical orientation of the work in this paper, the developments
are based on a business use case taken from the Financial Business Grid project
[7], [8]. This use case will act as basis for the exercise of retrieving requirements
for SLA Management in the financial Grids domain. We concentrate on the
subdomain of Portfolio Management.

Today the financial markets grow quickly and are hard to predict. For that
reason investors – private as well as managers in financial institutions – have
to be able to analyze quickly and evaluate the risks and performances of their

www.manaraa.com

Evaluation of SLA Approaches for Financial Grid Applications 59

portfolio investments. This might not be overly complex for a traditional private
investor who wants to evaluate portfolio performance and only has a small
number of portfolios to deal with. Then, calculations of gains or losses can be
performed quickly and easily and give relevant information on their investments.

However, in our use case, we face now a financial institution, called "Global
Finances", which wants to calculate the performance of around 3 million port-
folios. This is quite a challenge in terms of complexity and necessary capacities
for electronically calculation. This high number of portfolios makes it nearly
impossible to calculate them "in-house" for the financial institution in the time
desired to be able to react quickly. Even though Global Finances has a small
data center, the average time for these calculations would be in the order of
magnitude of multiple days when performed on their own resources. Most of
the information would already be outdated once the computations have finished.

For that purpose, the person responsible for portfolio analysis of Global
Finances examines the possibility of using the capabilities of Grid computing.
He investigates service providers that have the necessary infrastructure in order
to speed up the computational process and to drastically decrease the wall clock
time of the overall computation. Global Finances has employed virtualization
technologies on its own platform and, therefore, is looking for service providers
which can deploy virtual machine images. This gives Global Finances better
control over the execution environment and facilitates the scaling of the com-
putation. An important aspect for Global Finances is the data management:
communication with the service provider should happen in a secure form and
all data given to the service provider should be destroyed after the results have
been obtained by Global Finances.

The requirements that Global Finances has on both functional and non-
functional properties of a provided service can be easily specified in a SLA.
Besides these properties, obligations on both parties – for example, the obliga-
tion on Global Finances to provide the software to be executed in time or the
obligation on the service provider to ensure destruction of left-over data – as
well as penalties or rewards can be specified in this way.

3. Requirements on Service Level Agreement Approaches

According to the presented use case a requirement catalog is created. The
catalog is based on the special view of the financial industry and the technical
view of the Grid middleware Globus Toolkit. The analysis is divided into three
main categories which are discussed in the following.

A component which supports negotiation between provider and customer
is essential for creating SLAs on demand. The negotiation procedure is often
based on a template mechanism and defined by a negotiation protocol. The
provider manages a repository which contains, for instance, one template for

www.manaraa.com

60 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

each provided service and prepares a template as an offer on demand. The
customer reacts upon this. Parts of the offer can be customizable to adapt
special requirements of the customer. In general an offer is defined in a machine-
readable language (e.g. XML). However, the customer should edit the offer
without knowledge of the meta-language. Similar services should be arranged
into service classes (e.g. gold, silver and bronze [8]) which supports a better
management of the customers.

The process of providing SLAs can be classified into two phases from a
technical point of view. First, the contents of SLAs have to be modeled by the
specification language and second, they have to be established in the system.
SLA systems must support both phases. Modeling a SLA needs a suitable
specification language and a service model which contains essential elements
defining their semantics. The service model should be independent of a specific
environment for describing future scenarios as well. SLAs that are already
built and established should be accessible to reuse them or even parts of them
as modules to simplify modeling. Modeling a SLA usually takes place in an
abstract form which means without binding to specific resources. Furthermore,
SLAs have to be executed as automatically as possible.

Controlling the provided service is essential in a commercial Grid environ-
ment. Besides an internal controlling, it is additionally done by a trusted third
party. Thus, a neutral and objective controlling is possible. The control system
must be isolated from the rest of the system and should automatically compare
SLAs and gathered information to take adequate measurements. As a result,
the whole process of controlling is subdivided into measuring and monitor-

ing. Therefore, logical and arithmetical functions must be provided by a query
language. Beside monitoring of current values, SLAs have to be parsed and
verified on formal correctness. The use of suitable tools eases measurement and
monitoring.

4. Analysis of Five Service Level Agreement Approaches

Various approaches on SLA Management for Grid computing currently can
be observed in the literature. As the approaches differ in their complexity and
focus on various aspects, this chapter only gives a rough insight of state of the art
of existing SLA concepts and tools from international Grid projects. Finally it
presents an evaluation of fundamental characteristics based on a criteria catalog
in a compact manner.

4.1 Actual State of the Art

Web Service Level Agreement (WSLA) framework [9] is a development
of IBM research and promises a SLA-based management via web services. The
framework consists of a flexible and extensible language based on XML and

www.manaraa.com

Evaluation of SLA Approaches for Financial Grid Applications 61

a run time architecture comprising various SLA monitoring services, which
may be outsourced to third parties to ensure a maximum of objectivity. An
implementation of the framework, named as SLA Compliance Monitor, is
publicly available as part of the IBM Web Services Toolkit.

WS-Agreement [5] is a proposed recommendation of the Open Grid Forum
(OGF). It defines a language and a simple protocol for the management of SLAs.
For more than the single step negotiation the Grid Resource Allocation Agree-
ment Group (GRAAP) is currently working on WS-Agreement-Negotiation,
a specification for an interoperable protocol for sophisticated negotiation and
re-negotiation of SLAs.

Web Service Offerings Language (WSOL) [10], as a research activity of
Carleton University, is an XML notation. WSOL is used for describing multiple
service classes for a single web service based on functional and non-functional
constraints, simple access rights, pricing data and relationships with other
service offerings of the same web service. Describing a web service in WSOL
supports dynamic adaptation and management of service compositions using
manipulation of service offerings.

Web Services Management Network (WSMN) [11], as a development of
HP Labs, targets the management of web services that interact across adminis-
trative domains, and therefore typically involves multiple stakeholders. WSMN
introduces an architecture, an object model and several components and proto-
cols of a management overlay for federated service management. WSMN relies
on a network of communicating service intermediaries, each being a proxy
positioned between the service and the outside world.

The last analyzed approach addresses key issues to integrate QoS into web
services. The Web Service Quality of Service (WS-QoS) [12] framework
ensures QoS-awareness during a whole web services communication process.
The main contributions of this framework is an XML schema that enables QoS-
aware service specifications, a broker based web service selection model that
enables an efficient QoS-aware service selection as well as the QoS mapping
guarantying the assured QoS.

4.2 Evaluation and Interpretation

This subchapter summarizes the research approaches by illustrating the
evaluation. In table 1, a ’++’ explains a very good realization of the criterion.
A ’+’ indicates a preferred realization and a ’−’ illustrates that the criterion
could be theoretically fit but it is not in practice. If an approach does not meet
the given criterion, it is illustrated by a ’−−’.

One can determine that there exists a multiplicity of competitive systems at
the market. Its development is in differentiated stages or its main points of re-
search are in different sections. Furthermore, none of the examined approaches

www.manaraa.com

62 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

Table 1. Evaluation overview of five SLA approaches.

W
SL

A

W
S-

A
gr

ee
m

en
t

W
SO

L

W
SM

N

W
S-

Q
oS

Template + ++ −− −− −−
Multilayer Negotiation −− ++ −− −− +
Service Class − − ++ −− +

Spec. Language ++ ++ ++ ++ ++
Service Model ++ + − + ++
Independence − + − + +
Reusability − + ++ + −
Binding to Resources −− − − − +
Automation ++ − −− + −−
Quantification ++ + −− + +
Query Language ++ + ++ + −−
Verification + + + + ++
Supporting Tools ++ + + + −

fulfills all posed criteria. Nevertheless, WS-Agreement emerges as a quite
realizable system in designing and implementing a prototypical architecture.
The specification already includes a protocol for the most simple and general
case of negotiation: an offer for an SLA is made by either of the two parties
and the respective other party may accept or reject the offer.

5. An Insight into the developed Management System

When thinking about the described use case considering the actual state of
the art, we determine that there are lots of possibilities to develop a system for
managing SLAs for financial Grid applications. The selection of an appropriate
approach depends on the requirements of the involved parties (service customer,
service provider, developers). Nevertheless, we can propose a general archi-
tecture, mainly influenced by WS-Agreement [5], which enables developers
to create a SLA Management System which provides service customers and
service providers with a system for negotiation, management and monitoring
of SLAs. As a matter of course the proposed architecture is a basis which
should be extended and specified to the individual needs of the involved parties.
Furthermore, the described SLA Management System presented in figure 1
is usable for the financial industry but it is not restricted to this scope. Espe-

www.manaraa.com

Evaluation of SLA Approaches for Financial Grid Applications 63

cially, when thinking of managing QoS aspects with such a system the range of
application is much more broader because of its reuseability for other sectors.

Figure 1. Architecture of the SLA Management System for Portfolio Management

In the following we describe the proposed architecture for developing a
SLA Management System. First of all the architecture contains two parties,
the service customer side and the service provider side. A new service can
be instantiated by the service customer which may ask for an adequate offer.
Negotiator, Service, and SLA Manager are coupled closely together in order to
optimize the interaction and perform the service in the best way. The Negotiator

www.manaraa.com

64 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

notifies the SLA Manager which interacts with the Service Instance as well.
The SLA Manager is able to stop the service and it configures most other
components. The architecture offers a service and therefore it is possible to
construct this as a web service in a Grid environment. Thus, the service based
on a Grid architecture offers the possibility to split up components on several
resources. A Grid architecture is highly flexible and contributes to the field of
distributed computing. The single components of the architecture are described
in detail in the following.

The negotiation of a SLA is performed between the customer-side Negotia-

tor and the provider-side Negotiator according to the negotiation protocol of
[5]. The Negotiator of the customer obtains templates from the Negotiator of
the provider and creates an offer out of the template. The offer, which is already
binding on the customer, can be either accepted or rejected by the provider-side
Negotiator. So there is no multi-layer negotiation. If the provider-side Negotia-
tor decides on not accepting the offer, it informs the customer-side Negotiator
of the rejection. Otherwise, a service representing the agreement is created, its
endpoint reference is sent to the customer-side Negotiator and the provider’s
SLA Manager is informed of the newly created agreement.

The SLA Manager is connected to the Evaluator, Monitor, Negotiator, Ser-
vice Instance and Resource Manager. The Negotiator informs the SLA Manager
on creation of new agreements through a WS-Notification mechanism. The
configuration of the service depends on this agreement. The selected sequence
of first create an agreement and second configure the service is an effective way
of initiating the whole service. The SLA Manager configures the Evaluator
and the Monitor and it is enabled to make decisions related to the execution
of the service based on information it receives. Further, the SLA Manager
configures the Service Instance and it checks the validity of an SLA on behalf
of the Resource Manager.

The Monitor supervises the system of the service provider. However, it has
to be considered that the Monitor is just collecting the data which are sent to
the Evaluator with the aim to analyze them.

The Evaluator analyses the data received from the Monitor and sends the
evaluated data to the SLA Manager. The Evaluator is part of the internal control
system of the service to check if the terms of the agreement are valid or if there
are violations.

The SLA Management System is connected to the service layer by the
Service Instance. It is executed on behalf of the customer and related to the
Monitor, SLA Manager and Resource Manager.

The Resource Manager connects the SLA Management System to the un-
derlying scheduling and execution components. Requests for instantiation of
virtual machines and their execution are directed to the Resource Manager which
checks the request against the SLA with help from the SLA Manager. Valid

www.manaraa.com

Evaluation of SLA Approaches for Financial Grid Applications 65

requests are scheduled and executed in accordance with the QoS parameters
specified in the SLA.

The Consumer is a representative entity on the customer side. It stands for
any actor in the customer’s domain that is making use of the Service Instance.
It submits job requests under a given SLA to the Resource Manager.

6. Conclusion and Future Work

Grid computing has gained lots of popularity in particular in the scientific
environment. SLAs may be used to establish agreements on the QoS between
a service provider and a service consumer. In this paper we described an
architecture for a SLA-supported Grid infrastructure. The practical relevance
for the created infrastructure results from a business use case of the financial
industry. Several SLA approaches have been analyzed and as a result of the
evaluation a SLA Management System based on WS-Agreement has been
designed, implemented in a prototype and integrated in a Grid environment.

The working group around WS-Agreement progressed already far in its
comprehensive development and waits for feedback from practical conversion
attempts. Work is needed on all levels starting with the development of exten-
sions such as monitoring the resources involved [13] right through independent
implementations to prove interoperability [14] up to high level negotiation of
agreements [15]. Integrating service level in WS-RF respectively in Globus
Toolkit starts out.

Acknowledgments

This research is a part of the Financial Business Grid (FinGrid) project [7],
coordinated by the E-Finance Lab at the J.W. Goethe University, Frankfurt,
Germany. This material is based upon work supported by the German Federal
Ministry of Education and Research under Grant No. 01IG07004C. Any opin-
ions, findings, and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of the D-Grid
Initiative or the Federal Ministry of Education and Research.

References

[1] I. Foster and C. Kesselmann. The Grid: Blueprint for a New Computing Infrastructure.
Morgan-Kaufman, San Francisco, 1999.

[2] F. Berman, G. Fox, and T. Hey. Grid Computing - Making the Global Infrastructure a
Reality. John Wiley & Sons, 2003.

[3] J. Altmann and S. Routzounis. Economic Modeling of Grid Services. Proceedings of the
eChallenges conference, Barcelona, 2006.

[4] R. Addy. Effective IT Service Management – To ITIL and Beyond!. Springer, Berlin,
2007.

www.manaraa.com

66 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

[5] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne, J.
Rofrano, S. Tuecke, and M. Xu. Web Services Agreement Specification (WS-Agreement).
OGF GRAAP Working Group, 2006. URL: http://www.ogf.org/documents/GFD.107.pdf.

[6] The Globus Toolkit 4. http://www.globus.org, 2009-07-24.

[7] Financial Business Grid (FinGrid). http://www.fingrid.de, 2009-07-24.

[8] B. Skiera, O. Hinz, R. Beck, and W. König. Grid Computing in der Finanzindustrie. Books
on Demand, Norderstedt, 2009.

[9] A. Keller and H. Ludwig. The WSLA Framework: Specifying and Monitoring Service
Level Agreements for Web Services. Journal of Network and Systems Management,
11(1):57–81, 2003.

[10] V. Tosic, K. Patel, and B. Pagurek. WSOL – Web Service Offerings Language. CAiSE
2002 – Workshop on Web Services, e-Business and the Semantic Web, Toronto, 2002.

[11] V. Machiraju, A. Sahai, and A. v.Moorsel. Web Service Management Network (WSMN):
An Overlay Network for Federated Service Management. 8th IEEE/IFIP International
Symposium on Integrated Network Management, Florence, 2003.

[12] M. Tian. QoS integration in Web Services with the WS-QoS framework. PhD Thesis at
University of Berlin, 2005.

[13] G. Scorsatto and A.C.M. Alves de Melo. GrAMoS: A Flexible Service for WS-Agreement
Monitoring in Grid Environments. 14th International Euro-Par conference on Parallel
Processing, Las Palmas, 2008.

[14] D. Battré, O. Kao, and K. Voss. Implementing WS-Agreement in a Globus Toolkit 4.0
Environment. In Grid Middleware and Services – Challenges and Solutions, pages 409–
418, 2008.

[15] W. Ziegler, P. Wieder, and D. Battré. Extending WS-Agreement for dynamic negotiation
of Service Level Agreements. CoreGRID Technical Report TR-0172, 2008.

www.manaraa.com

EXPRESSING INTERVALS IN AUTOMATED

SERVICE NEGOTIATION

Kassidy P. Clark, Martijn Warnier,
Sander van Splunter, Frances M.T. Brazier
Systems Engineering
Faculty of Technology, Policy and Management
Delft University of Technology
The Netherlands

[k.p.clark, m.e.warnier, s.vansplunter, f.m.brazier] @tudelft.nl

Abstract During automated negotiation of services between autonomous agents, utility
functions are used to evaluate the terms of negotiation. These terms often include
intervals of values which are prone to misinterpretation. It is often unclear if an
interval embodies a continuum of real numbers or a subset of natural numbers.
Furthermore, it is often unclear if an agent is expected to choose only one
value, multiple values, a sub-interval or even multiple sub-intervals. Additional
semantics are needed to clarify these issues. Normally, these semantics are
stored in a domain ontology. However, ontologies are typically domain specific
and static in nature. For dynamic environments, in which autonomous agents
negotiate resources whose attributes and relationships change rapidly, semantics
should be made explicit in the service negotiation. This paper identifies issues that
are prone to misinterpretation and proposes a notation for expressing intervals.
This notation is illustrated using an example in WS-Agreement.

Keywords: Interval, Semantics, Negotiation, Automation, WS-Agreement, Agents

P. Wieder et al. (eds.), Grids and Service-Oriented Architectures for Service Level Agreements,
DOI 10.1007/978-1-4419-7320-7_7, © Springer Science+Business Media, LLC 2010

www.manaraa.com

68 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

1. Introduction

In the field of automated negotiation, the negotiation process is typically
an exchange of offers between autonomous agents [1]. These agents have
control over their own behavior and decision-making process. Furthermore, they
can adapt to a changing environment, using different strategies and assuming
different roles to achieve their goals. When an agent receives an offer, the agent
evaluates the utility of the offer to determine the best course of action, such as
accepting or proposing a counter-offer.

Offers specify values for the terms that can be negotiated. These terms can
include discrete values, such as {red, green, blue} or intervals of values, such
as {between 10 and 100}. During automated negotiation between autonomous
agents, utility functions are most often used to evaluate the terms of negotia-
tion. Evaluating the utility of a discrete value is well understood [2]; however,
evaluating the utility of an interval of values is an area of ongoing research [3].
Figure 1 shows three possible utility functions with which autonomous agents
can evaluate intervals. Using the example of negotiation in the energy market,
each utility function can be used by agents in different roles: (a) an interval can
have a rising utility, for instance, for a consumer it will hold that the lower the
price, the better; or (b) utility only increases to a point and then decreases, for
example, an energy consumer can store, for a low price, a certain amount of
over capacity in a local battery. At the point that the battery is full the consumer
can no longer profit from this cheap energy source and the utility will drop
again; or (c) from the perspective of an energy provider, utility remains equal
for all values, except one, such as when a value nears a sensitive threshold
that requires extra effort to prepare additional resources. For instance, when a
second power plant must be activated for only a small fraction of its capacity.
Note that roles can change dynamically in this environment. The consumer
from (b) can become a producer, by selling the energy stored in its local battery,
in which case the same interval has a different utility.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

(a) Rising

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

(b) Single-peak

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8 9

(c) Dip

Figure 1. Examples of utility functions for interval evaluation, adapted from [3]

Many other utility functions are possible; however, to correctly compute the
utility of an interval, it is first necessary to understand what is meant by that
interval. It may be unclear: (1) if the choices are exclusive or inclusive; (2)
if the values are real or natural; (3) if one value can be chosen or multiple, or

www.manaraa.com

Expressing Intervals in Automated Service Negotiation 69

(4) if a sub-interval be can chosen or multiple sub-intervals. Without explicit
semantics, the utility cannot be correctly interpreted.

One solution is to clearly define intervals offline, before agents enter into
the negotiation arena. Another solution is to create very clear definitions and
store these explicitly in a domain ontology that is available to agents during
negotiation [4–5]. Domain ontologies are useful in static environments in
which the domain of negotiable objects and relationships does not change
quickly. However, to achieve automated negotiation in dynamic environments
with autonomous agents in which resources are subject to constant change, a
different approach is needed.

Moreover, in autonomous systems, agents are able to adapt to changing
situations by assuming different roles at different phases of negotiation. For
instance, in a dynamic energy market with decentralized co-generation of power,
a consumer of electricity can also be a provider [8]. In these cases, no clear
distinction can be made between the roles of client and server. As such, the
range of possible actions and intentions is more difficult to define in a static
ontology.

This notion of adding additional semantics to intervals has already been
discussed for scheduling compute jobs on the Grid [6]. Time is an object that
is inherently continuous and thus scheduling compute tasks typically consists
of defining and selecting not one instant in time, but rather intervals of time.
This specific scenario has been addressed by adding semantics to describe two
intervals: (1) the duration of the task and (2) the larger scheduling interval
between the earliest possible time to start the job and the latest possible time
the job must be completed [7]. Whilst in this scenario the specific case of
scheduling is addressed, a more generic set of semantics is needed for more
general scenarios.

The contributions of this paper are a generic notation to express semantics to
facilitate interval evaluation during automated negotiation between autonomous
agents in a dynamic environment. This paper is organized in the following way.
In Section 2, a negotiation scenario is presented to motivate the necessity of
interval semantics. Section 3 presents the precise issues that must be addressed
and describes the proposed generic notation for clarifying them. This generic no-
tation is expressed in Section 4 using the WS Agreement specification. Finally,
the conclusions and areas of future work are discussed in Section 7.

2. Interval Semantics

The following scenario illustrates the need for interval semantics. In this
scenario, two autonomous agents negotiate the provision of electricity in a
dynamic, open energy market [8]. Agent (A) wishes to purchase electricity
from agent (B). Agent (B) specifies the available electricity as an offer. This

www.manaraa.com

70 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

document shows the available sources and attributes of electricity as illustrated
in Figure 2. The assumptions made in this example include that Provider is
an exclusive choice, as a contract is either signed with one provider or the
other, but not both. Another assumption is that the Source is not exclusive, as a
contract can contain both solar energy during the day and coal energy during
the night. More chances of misinterpretation become apparent with the intervals
Base Rate and Quantity. The assumption is that the price is continuous with
a precision of several digits past the decimal point. However, should a single
value be chosen? Or perhaps choosing a sub-interval would be better, such as
between 10 and 20. In contrast, the quantity of kilowatt hours is not typically
specified with such a level of precision and this interval may actually only
contain discrete choices in increments of 1000. These semantics, however, are
not explicit and could cause incorrect assumptions.

OFFER

Base Rate = {0 - 100}

Quantity = {0 - 10000}

Provider = {A, B, C}

Sources = {Nuclear, Coal, Gas, Wind, Solar}

Green Percent = {0 - 100}

Availability = {75 - 100}

CO2 Compensation = {green investment}

Buy-back Rate Factor = {50 - 500}

Figure 2. Resource offering

Some intervals may be described with exclusive choices. For instance, Base
Rate is described as starting at zero, yet this is not a valid choice, but rather an
exclusive lower limit. The first valid choice may actually be 1 or 0.5 or some
other positive number.

When multiple choices are presented, the order of the choices may have
meaning. For instance, Source may be ordered according to price or carbon
emission. In contrast, when there is no order, it can be useful to express this
fact explicitly, as well.

It is also unclear when only one value should be chosen, such as Provider or
when multiple values should be chosen, such as Sources. Regarding continuous
intervals, it is unclear when a value should be chosen, such as Green Percent,
or when a sub-interval should be chosen, such as Base Rate. Thus, there is a
chance of misinterpretation in both the meaning of the terms (e.g. inclusive
or exclusive) as well as the types of choices can be made (e.g. single value,
multiple values or sub-interval). Misinterpreting the meanings of these choices
can lead to a suboptimal or unacceptable offer.

Often relationships and dependencies between choices need to be specified.
For instance, some options may be inclusive, such as Solar energy can only be
chosen in combination with a second energy source. Similarly, relationships

www.manaraa.com

Expressing Intervals in Automated Service Negotiation 71

between terms are important. For instance, if Nuclear energy is chosen, then
only providers A and B are available. For intervals, the higher the Availability,
the higher the Price. While these relationships could conceivably be derived
from several rounds of negotiation, showing them explicitly could make for
faster negotiation.

In some cases, an agent may reveal their utility function and/or preferences
to its counterpart from the start [9]. For instance, one agent may inform its
counterpart that, of the five sources, Solar is their first choice, and Gas is their
second choice.

The semantics of an offer can also change during different phases of negotia-
tion due to a dynamic market: products change and preferences change. A shift
in demand could cause green sources of energy to become scarce, thus affecting
price. Similarly, providers could add incentives, such as CO2 Compensation, to
interest consumers in using more gray energy. A domain ontology could not
store such dynamic, situation-specific information. However, these changes
could be directly reflected in the semantics of the current service offer.

When negotiations are automated, any issues that require assumptions can
lead to misinterpretation and an incorrect evaluation of the utility of the offer. As
the example above illustrates, these semantics are not always clear. Therefore,
explicit semantics are needed to describe the offer being made and the choices
that can be taken. Furthermore, these semantics must be expressed in the offer
rather than in a domain ontology, so an offer can react to the changes of a
dynamic environment.

3. Expressing intervals

Each issue that is prone to misinterpretation, as summarized in Table 1,
requires a clear notation that conveys the intended meaning. This notation
can be added to service offers and subsequent responses to indicate the exact
meaning of a term to facilitate correct interpretation and evaluation.

Figure 3 shows the same offer as before, but with added semantics. To differ-
entiate an ordered list from an unordered list, an ordered list is surrounded by
‘<’ and ‘>’, whereas an unordered list is surrounded by ‘{’ and ‘}’. To indicate
whether an interval’s limits are inclusive or exclusive, standard mathematical
notation is used. This requires a ‘(’ or ‘)’ for inclusive and a ‘[’ or ‘]’ for
exclusive. Indifference is indicated with ‘∗ ∗ ∗’. All other issues use annotations
that take predefined values.

Whether an interval is continuous or discrete is indicated with the annotation
‘CD’ that takes a letter and number as its value. If continuous, the letter ‘C’
is followed by a number indicating the precision. If discrete, the letter ‘D’ is
followed by a number indicating the size of the increments.

www.manaraa.com

72 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

Table 1. Issues prone to misinterpretation

Ordered

or Unordered

Are multiple values ordered or unordered? If ordered,
what is the meaning of the order?

Inclusive

or Exclusive

Are the limiting values of an interval inclusive or exclu-
sive?

Continuous

or Discrete

Is an interval continuous or discrete? If continuous, to
what precision? If discrete, what are the increments?

Value

or Interval

Should choices be in the form of a single value or a sub-
interval? How many of each?

Preference Is there a preference for one choice above another?

Indifference Is a user indifferent to the value of a certain term?

Relationships

of choices

Are there relationships between multiple choices?

Relationships

of terms

Are there relationships between different terms?

Whether a value or interval should be chosen is indicated with the annotation
‘VI’ that takes a letter and number as its value. If a value, the letter ‘V’ is
followed by the number of values that may be chosen. If an interval, the letter
‘I’ is followed by the number of sub-intervals that may be chosen.

If one choice is preferred over another, the ‘PC’ annotation is used. This
indicates that the order of the values conveys the preference.

To indicate that a relationship exists between two choices, the ‘RC’ annotation
is used. This takes the value of ‘TERM:RELATIONSHIP:TERM’ where ‘RELATION-
SHIP’ is a predefined term, such as ‘INCREASES’ or ‘REQUIRES’. Similarly, the ‘RT’
annotation is used to indicate relationships between two terms. This takes the
value of ‘RELATIONSHIP:TERM’ and uses a set of predefined relationships, such as
‘AND’ or ‘ONLY’.

Figure 3 is interpreted in the following way: Base Rate is an interval that
excludes the lower limit and includes the upper limit. Furthermore, it is contin-
uous to five digits past the decimal point and one sub-interval can be chosen.
Quantity is also an interval that excludes the lower limit and includes the upper
limit. Furthermore, it is discrete with increments of 100 and a single value can
be chosen. Provider is an unordered list and only one value can be chosen.
Sources is an unordered list and two values can be chosen. Furthermore, either
Wind or Solar can be chosen, but not both. Green Percent is an interval of
continuous natural numbers with inclusive limits. A single sub-interval can be
chosen and as this value increases, Availability decreases. Availability is an
interval with an inclusive lower limit and an exclusive upper limit. Furthermore,

www.manaraa.com

Expressing Intervals in Automated Service Negotiation 73

OFFER

Base Rate = (0 - 100] | CD:C5, VI:I1

Quantity = (0 - 10000] | CD:D100, VI:V1

Provider = {A, B, C} | VI:V1

Sources = {Nuclear, Coal, Gas, Wind, Solar} | VI:V2, RC:Wi:OR:So

Green Percent = [0 - 100] | CD:C0, VI:I1, RT:DECREASES:Availability

Availability = [75 - 100) | CD:C0, VI=V1, RT:DECREASES:Green Percent

CO2 Compensation = {green investment} | VI:V1, RT:ONLY:A

Buy-back Rate Factor = [0.1 - 4] | CD:C1, VI:I1

RESPONSE

Base Rate = [5.5 - 12]

Quantity = {5000}

Provider = {A}

Sources = <Solar, Gas> | PC:YES

Green Percent = [***]

Availability = {99}

CO2 Compensation = {green investment}

Buy-back Rate Factor = [1 - 2]

Figure 3. Resource offer and response with added semantics

it is continuous with zero digits of precision and a single value can be chosen.
CO2 Compensation is only available from provider “A”. Finally, Buy-back
Factor is an interval with inclusive upper and lower limits. Furthermore, it is
continuous with one digit of precision and a single sub-interval can be chosen.

The response made to the offer also uses added semantics. Base Rate contains
an interval with inclusive limits. Sources is an ordered list ordered by preference.
Furthermore, the agent is indifferent to the value of Green Percent.

4. Expressing intervals in WS Agreement

The WS Agreement specification defines a language with which to express
agreements and a protocol to support negotiation of Service Level Agreements
(SLAs) between parties [10]. WS Agreement uses XML to specify Templates
that advertise available services and list additional constraints. Based on these
templates, Agreement Offers are proposed until the parties reach an agreement.

Continuing the earlier example of energy provision, annotations will take the
form of XML tags and can be added to the XML schema to resolve issues prone
to misinterpretation. Figure 4 shows the same service offer and response using
XML for WS Agreement. Two parties negotiate the provision of energy. The
provider advertises the available choices in a template using additional semantic
tags, as introduced above.

Instead of the ‘(’ and ‘)’symbols, the min- and maxExclusive tag is used, and
instead of the ‘[’ and ‘]’symbols, the min- and maxInclusive tag is used. This can
be seen in the baseRate and quantity items. To express ordering, an additional
ordering tag is used, instead of ‘{’ and ‘<’ as used earlier. Additionally, a “rank”

www.manaraa.com

74 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

TEMPLATE

<wsag:Item wsag:name="baseRate" CD="C5" VI="I1">
<minExclusive="0"/>
<maxInclusive="100"/>

</wsag:Item>
<wsag:Item wsag:name="quantity" CD="D100" VI="V1">

<minExclusive="0"/>
<maxInclusive="10000"/>

</wsag:Item>
<wsag:Item wsag:name="provider" VI="V1">

<list ordering="NONE">
<enum value="A"/>
<enum value="B"/>
<enum value="C"/>

</list>
</wsag:Item>
<wsag:Item wsag:name="sources" VI="V2">

<list ordering="NONE">
<enum value="Nuclear"/>
<enum value="Coal"/>
<enum value="Gas"/>
<enum value="Wind"/>
<enum value="Solar"/>

</list>
<RC="Wi:OR:So">

</wsag:Item>
<wsag:Item wsag:name="greenPercent" CD="C0" VI="I1">

<minInclusive="0"/>
<maxInclusive="100"/>
<RT="DECREASES:availability"/>

</wsag:Item>
<wsag:Item wsag:name="availability" CD="C0" VI="V1">

<minInclusive="75"/>
<maxExclusive="100"/>
<RT="DECREASES:greenPercent"/>

</wsag:Item>
<wsag:Item wsag:name="co2Comp" VI="V1">

<enum value="green investment"/>
<RT="ONLY:A"/>

</wsag:Item>
<wsag:Item wsag:name="buyBackFac" CD="C1" VI="I1">

<minInclusive="0.1"/>
<maxInclusive="4"/>

</wsag:Item>

OFFER

<wsag:Item wsag:name="baseRate">
<minInclusive="5.5"/>
<maxInclusive="12"/>

</wsag:Item>
<wsag:Item wsag:name="quantity">

<enum value="5000"/>
</wsag:Item>
<wsag:Item wsag:name="provider">

<enum="A"/>
</wsag:Item>
<wsag:Item name="sources" PC="YES">

<list ordering="PREFERENCE">
<enum value="Solar" rank="0"/>
<enum value="Gas" rank="1"/>

</list>
</wsag:Item>
<wsag:Item name="greenPercent">

<enum value="***"/>
</wsag:Item>
<wsag:Item name="availability">

<enum="99"/>
</wsag:Item>
<wsag:Item wsag:name="co2comp">

<enum="green investment"/>
</wsag:Item>
<wsag:Item wsag:name="buyBackFac">

<minInclusive="1"/>
<maxInclusive="2"/>

</wsag:Item>

Figure 4. WS-Agreement template and offer with semantics

value with ascending order is added to each element in the list as XML does
not natively support ordering of elements. This is illustrated in the sources item
of the offer. When an agent wishes to indicate preferential ordering, the value
of this tag is modified in the offer.

5. Conclusion

Understanding the meaning of offers is crucial to negotiation. This is espe-
cially true for automated negotiation between autonomous agents in dynamic
environments. Offers often contain intervals of choices, which are prone to
misinterpretation and thus require additional semantics. This extra knowledge
is often stored in a static domain ontology. However, this solution is not well

www.manaraa.com

Expressing Intervals in Automated Service Negotiation 75

suited to a highly dynamic environment of autonomous agents, in which re-
sources, relationships and user’s roles are constantly changing. This paper
focuses on the specification of intervals of choices during negotiation. The
interval semantics proposed are domain independent and self-contained in ne-
gotiation offers. In addition to preventing misinterpretation of intervals, these
semantics also express dynamic relationships between intervals.

Future work on this topic will investigate how to better express relationships
and preferences that change dynamically. For instance, as a deadline approaches,
the need for a successful agreement increases and the need for a particular at-
tribute decreases. Furthermore, research will focus on the challenge of adapting
negotiation strategies and utility functions during dynamic negotiations.

Acknowledgments

This work is supported by the NLnet Foundation (www.nlnet.nl).

References

[1] N. Jennings, P. Faratin, A. Lomuscio, S. Parsons, M. Wooldridge, and C. Sierra. Auto-
mated negotiation: prospects, methods and challenges. Group Decision and Negotiation,
10(2):199–215, 2001.

[2] H. Raiffa. The art and science of negotiation: How to resolve conflicts and get the best out
of bargaining, Belknap Press, 2002.

[3] R. C. van het Schip, S. van Splunter, and F. M. T. Brazier. Template evaluation and
selection for ws-agreement. Service Level Agreements in Grids Workshop, 2009.

[4] G. Tondello and F. Siqueira. The QoS-MO ontology for semantic QoS modeling. In
Proceedings of the 2008 ACM symposium on Applied computing, pages 2336–2340,
ACM New York, NY, USA, 2008.

[5] H. Jin and H. Wu. Semantic-enabled specification for Web Services agreement. Interna-
tional Journal of Web Services Practices, 1(1-2):13–20, 2005.

[6] H. Ludwig, T. Nakata, O. Wldrich, P. Wieder, and W. Ziegler. Reliable orchestration of
resources using ws-agreement. LNCS, Vol. 4208:753, 2006.

[7] D. Battr, O. Wldrich. Time Constraints Profile, Version 1.0. In Global Grid Forum
GRAAP-WG, Draft, October, 2009. http://www.ogf.org.

[8] E. Ogston and F. M. T. Brazier. Apportionment of control in virtual power stations. In
Proceedings of the international conference on infrastructure systems and services 2009:
Developing 21st Century Infrastructure Networks, 2009.

[9] E. Oliveira, J. Fonesca, and A. Steiger-Carca. Multi-criteria negotiation on multi-agent
systems. In Proceedings of the First International Workshop of Central and Eastern Europe
on Multi-agent Systems (CEEMAS’99), 1999.

[10] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano,
S. Tuecke, and M. Xu. Web Services Agreement Specification (WS-Agreement). In
Global Grid Forum GRAAP-WG, Draft, August, 2004.

www.manaraa.com

GREENIT SERVICE LEVEL AGREEMENTS

Gregor von Laszewski
Pervasive Technology Institute
Indiana University
2729 E 10th St.
Bloomington, IN 47408
U.S.A.
laszewski@gmail.com

Lizhe Wang
Pervasive Technology Institute
Indiana University
2729 E 10th St.
Bloomington, IN 47408
U.S.A.
lizhe.wang@gmail.com

Abstract In this paper we are introducing a framework towards the inclusion of Green IT
metrics as part of service level agreements for future Grids and Clouds. As part
of this effort we need to revisit Green IT metrics and proxies that we consider
optimizing against in order to develop GreenIT as a Services (GaaS) that can be
reused as part of a Software as a Service (SaaS) and Infrastructure Infrastructure
as a service (IaaS) framework. We report on some of our ongoing efforts and
demonstrate how we already achieve impact on the environment with our services.

Keywords: Green Service Level Agreements, Service Level Agreements, Green IT, Green
Grids, Green Clouds.

P. Wieder et al. (eds.), Grids and Service-Oriented Architectures for Service Level Agreements,
DOI 10.1007/978-1-4419-7320-7_8, © Springer Science+Business Media, LLC 2010

www.manaraa.com

78 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

1. Introduction

With the increased attention that green information technology (Green IT)
is playing within our society it is timely to not only to conduct service level
agreements for traditional computer performance metrics, but also to relate
the effort of conducting agreements while incorporating their environmental
impact. Much attention has recently been placed on reducing the environmental
and operation cost impact of information technology [3],[4],[5]. This includes
activities by the US government to especially target data centers, computers,
and electronic equipment [1],[24]. As this world wide trend intensifies [6],[16],
[8] Green IT will become even more important.

To provide a small motivational overview let us consider a typical desktop
computer consumes 200-300W of power. One typical measurement for envi-
ronmental impact is the resulting CO2 emission. For the desktop computer this
may result in about 220Kg of CO2 per year. In contrast a typical data center
produces 170 million metric tons of CO2 worldwide currently per year. The
expected emission data centers worldwide annually by 2020 will result in 670
million metric tons of CO2. The average American car emits about seven tons
of CO2 per year. To put this in perspective, the average American family emits
about 24 tons. Thus the data centers produce about the same as 28 million
people or more than 95 million cars per year.

Another common measure is to simply use the power consumption and relate
it to common values. To give an example, today’s state-of-the-art supercomputer
with 360 Tflops with conventional processors requires 20 MW to operate, which
is approximately equal to the sum of 22,000 US households power consumption.
In conjunction servers consume 0.5% of the world’s total electricity usage and
total energy usage is expected to quadruple by 2020. The total estimated energy
bill for data centers in 2010 is $11.5 billion. However, 32% of all servers are
running at or below 3 % peak and average utilizations, wasting energy spinning
and cooling, and doing virtually no work. Thus, it is obvious that any efforts in
reducing power and environmental impacts are significant.

1.1 Impact Factors

We distinguish for our purposes a number of impact factors that are essential
for our Green IT efforts in regards to service level agreements. These impact
factors are targeting hardware, software, environment, and behavior (see Figure
1).

Hardware. First, we have to recognize that any hardware used in a data
center consumes energy, produces heat and thus has an immediate impact on
the environment. While a single computer has only little impact, millions of
machines as combined in many data centers have a significant impact.

www.manaraa.com

GreenIT Service Level Agreements 79

Figure 1. Green IT impact factors

Web
Service

G
aaS

 Inform
ation S

ervices

M
etric C

onversion and E
stim

ation S
ervices

SLA
Negotiator

Knowledge
base

SLA
Contractor

SLA

GaaS Web Portal

SLA
Performance

Analysis Engine

Sensor

SLA
Accounting

SLA
Renegotiator

Application

Sensor Sensor

Figure 2. GaaS SLA Framework

Furthermore, we have to consider that the newest generation of hardware
includes a variety of sensors and the capability to ingest energy efficient con-
siderations in their uses either through automatic features provided by the
hardware itself, or through enhanced software services, which we will discuss
later. Presently, obtaining temperatures from processors, motherboards, disk
drives as well as modern power supplies and fans and even motherboards have
become the norm. Using these capabilities becomes thus most natural to be
considered as part of the usage of the equipment. Examples of such integrated
features include the shutdown of monitors when not in use (together with soft-
ware controlled by the operating system), the dynamic voltage scheduling of
processors, and the automatic adaptation of cooling equipment.

Furthermore, we also have to consider that recently as part of what has
been termed disruptive technologies, general-purpose graphics processing units
have been exploited to conduct numerical calculations. The availability of this
specialized add on components can provide a quite significant performance
boost. For example, we demonstrated in [12]a speedup of seventy times in a
biostatistical application for flowcytometry in. This is in contrast to a processor
that was available to us as part of our standard hardware infrastructure. Thus, it
becomes apparent that is better to use a single system with a general-purpose
graphics processing unit instead of building a cluster of seventy compute nodes.
Not only do we save energy but also substantial capital costs in hardware.
However, one has to develop and find applications that fit such special purpose
hardware and it is at this time unclear how to factor the software engineering
effort into account. Yet even on a cluster we would have to make sure we obtain
or develop proper software that utilizes the hardware in optimal fashion.

www.manaraa.com

80 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

Software. From the previous section, it is clear that the software plays an
increasingly important role. We need to distinguish software that we term to be
at the “close to metal layer,” software on the “operating system layer,” software
on the “middleware layer”, and software on the “application layer.”

Each of these software layers can contribute towards the energy efficiency of
the underlying hardware. While including sensors and metrics and providing
proper optimization mechanisms in order to reduce the environmental impact
of the hardware at runtime.

This includes for example the development of sophisticated energy efficient
scheduling algorithms [23]. Another aspect of such scheduling frameworks
may be the migration of applications or calculations onto more energy efficient
hardware. A primitive but effective component can also be the automatic
shutdown of hardware or software services if they are not in use. Helping to
enhance this trend are Software as a Service (SaaS) and Infrastructure as a
Service (IaaS) efforts.

While shifting the traditional programming efforts from developing stand
alone programs towards the creation of services, it provides us with the unique
opportunity to augment these services not only with capability descriptions in
regards to computing such as its functionality or performance, but also integrate
Green IT metrics that are relevant for establishing service level agreements
between green as a services (GaaS).

We will describe our efforts to develop a GaaS in a later section of this paper.

Environment. Another important impact factor is the actual environment in
which the compute and IT resources are located. This environment includes
the building, machine room, offices, heating, ventilating, and air conditioning
(HVAC) and reaches as far down as the computer rack and case design. Much
effort has been recently spent in this realm including container based compute
centers and redesign of backup power systems as for example introduced by
Google.

Furthermore, on has to consider where the power for large-scale datacenters
is obtained from. Some companies have increased their efforts to obtain power
from alternative energy resources. Using the geographical location of the center
can also be used to drive down the energy consumption as recently has been
proposed by Google moving one datacenter to Brussels. With virtualization, the
opportunity exists to engage in service level agreements that take into account
such environmental impact factors and schedule Virtual Machines based on
agreements which include not only the cost of the electricity, but also how the
electricity is produced and which CO2 value it has.

Behavior. One of the most important factors that sometimes gets ignored the
awareness of the environmental impact one has. Often programs are developed

www.manaraa.com

GreenIT Service Level Agreements 81

correctly for performance and accuracy reasons, but we have recently shown
that we can reduce indirectly the amount of energy used by scheduling calcu-
lations on a supercomputer in such a way that lowers the overall temperature.
Furthermore, it is not that essential on how fast the calculation is performed but
that the overall set of scientific experiments is conducted in a high throughput
fashion. Hence the overall round trip time of many experiments is more impor-
tant than the actual performance of an individual experiment. This concept is
well known as High Throughput Computing [14] has been employed by for
example the Condor project.

Other behaviors such as using single precision or a mixed precision envi-
ronment for obtaining results that are good enough could lead to a significant
reduction in resources used. Most importantly we observed as part of our edu-
cational efforts that the availability of tools to visualize and give fast feedback
about the environmental impact of a calculation is a significant feature to change
behaviors of the scientists. Reporting on the overall environmental impact of
a calculation in terms that can be related to daily activities (such as driving
a car from New York to San Francisco) help motivating changes. Exposing
this information as part of a computational portal and gateway is an essential
component of GreenIT services. Together the activities need therefore included
not only in educational processes at an institute level, but also in policy or
operational considerations to reduce the carbon footprint. Efforts such as being
charged for the environmental impact (for example a carbon emission tax) will
accelerate such behavioral changes more quickly.

1.2 Service Level Agreements

As we are reaching more mature frameworks and middleware for Grid
and Cloud computing it is becoming more important to incorporate service
level agreements (SLA) into these frameworks that act automatically. Several
specification, frameworks and software systems have recently been developed
that target service level agreements [15],[17].

A good elementary introduction of the topic of SLA can be found in [15].
Important to note are the requirements and phases for an encompassing SLA
framework which includes: (a) the SLA template specification, (b) publication
& discovery in regards to the quality of service, (c) negotiation between the
parties, (d) provider resource optimization to fulfill the contract, (e) monitoring
of the agreement, (f) re-negotiation in case the original agreement is violated,
(g) evaluation of the agreement to detect violations, and (h) accounting to offer
appropriate payment of reimbursement of the services offered. Additionally,
one has to also consider that in future one may want to introduce additional
monitoring capabilities that allow (i) self regulation and policing as suggested
in [21].

www.manaraa.com

82 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

A good example of the need for this is a system which makes false advertise-
ments (willingly or unwillingly) for a service that it can not deliver. Engaging in
such a contract will be useless and before a contract is established such factors
as reputation may have to be put into consideration.

Hence, a SLA framework will have to support these requirements and the
associated phases with specialized services that are typically integrated in a
service oriented architecture framework. This includes but is not limited to the
negotiation of the contract and the monitoring of its fulfillment in run-time, as
well as the policing of the contracts.

2. GreenIT Metrics

As part of our efforts we need to utilize Green IT metrics, such as Data
Center Infrastructure Efficiency (DCiE) [18], [11], Power Usage Effectiveness
(PUE) [11], Data Center energy Productivity (DCeP) [13], Space Watts and
Performance (SWaP) [2], storage, network, and server utilization. Furthermore,
we need to expose information about proxies that provide effective indicators
and are often easy to implement. Such proxies include productivity sample
workload, and bits per Kilowatt hour [13]. We will incorporate these and other
metrics into the GaaS framework. This framework can than be used as an incu-
bator to innovative algorithms and strategies while utilizing cyberinfrastructure
in an attempt to minimizing the impact of science on the environment.

One of the most important aspects of a SLA for Green IT is to establish proper
metrics that can be used for an agreement. There are many metrics available
that would be appropriate for consideration. However, we have to recognize
that a metric may not be exactly correlated to the final goal of reducing the
overall environmental impact. This is especially true if we consider just runtime
metrics and not lifetime metrics that include creation, recycling, and disposing
of a resource or a system that generates energy to operate a resource. For the
purpose of this discussion we do not consider at this time the later.

Furthermore, we notice that the issue of SLAs is actually a multi-scale
problem that reaches from the smallest components over a server to an entire
datacenter or even an agglomerate of data centers as part of a Grid or cloud.

The most common metrics that we can consider for SLAs are green house
gas emission temperature [10] power consumption. Often humidity [7] is also
considered as it has a significant impact on HVACs.

Whatever metric we chose, we must be careful if it indeed offers the required
environmental benefit. For example let us consider metrics that measure the
efficiency of a datacenter, such as the Data Center Infrastructure Efficiency,
DCiE or DCE [18], [11], and the Power Usage Effectiveness (PUE): where
PUE = 1/ DCiE = Total Facility Power /IT Equipment Power.

www.manaraa.com

GreenIT Service Level Agreements 83

As seen above, PUE shows the relation between the energy used by IT equip-
ment and energy used by other facilities such as cooling needed for operating
the IT equipment. However it does not directly compare the environmental
impact between data centers that must be measured in a different way. We find
the PUE inadequate for our purposes.

We prefer however to apply the concept of metrics that DCxP introduces
[13]: the amount of a unit x consumed to produce a particular work item. Hence,
DCeP refers to as Useful work/Total energy consumed to produce that work.

To correlate such activities to Grids and Clouds has just been initiated and
for example as part of efforts at the Open Grid Forum (OGF) [9].

In general we believe that multiple metrics and proxies that are easier to
measure than the actual environmental impact will dominate for the next years
the SLAs in regards to Green IT. However, if improved and integrated between
each other, we may be able to extrapolate a holistic approach of choreographed
services on multiple scales to assess the entire environmental impact of a given
calculation, task, or scientific experiment.

3. GreenIT SLA Specifications

The specifications that we need to formulate include typical unit comparison
and regular expressions to allow for maximum flexibility. Thus we will allow
specifications such as

Establish an execution service for 3 hours if the total carbon emission of the
service is below x number of tons.

However we discovered while talking to application users that such a metric,
although correct and useful for machine oriented services, may not be enticing
the application user to actually use such a service as the unit metric ton may be
too unfamiliar or can not be related to a real scenario.

Thus our framework will also include inquiry services that allow to query
or even measure a subset of the calculations to be performed the impact of the
calculation on a machine. Over time we may obtain a comparative factor for a
number of different calculations that can be used for picking a resource with the
least amount of environmental impact. This is similar to our efforts that have
been conducted more than a decade ago [20][19].

In addition we will have a metric to proxy service that can correlate different
environmental measurements that are more easily understood. An example
query to this service would be

How many miles can I drive with my car in order to use the same CO2 value as
my supercomputing application that I ran on my super computer.

Clearly such a common formulation of the impact of users not necessarily
being experts in environmental units is important to entice the community and to
build a stronger relationship to environmental impact of scientific calculations.

www.manaraa.com

84 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

4. GreenIT Services

Next, we describe our services for a Green IT enabled service level agreement
framework.

Besides providing services that give immediate feedback about environmental
conditions as part of a sophisticated sensor network, we also provide services
that provide feedback in regards to better utilization and cost reduction of
existing infrastructure. These services can be integrated into a framework
that over time provides valuable input in how we design the next generation
datacenter and encourage behavioral changes how we can balance performance
requirements with environmental concerns.

The GreenIT services for SLA are based on a number of integrative activities.
This includes (a) analyze and leverage from current efforts in Green IT, (b)
project and improve best practices including metrics, (d) provide green monitor-
ing and auditing services, (e) provide services supporting Green IT service level
agreements, (f) provide a green portal component, and (g) develop a coordinated
infrastructure for Green IT.

Together these coordinated efforts impact how we conduct science with the
help of modern cyberinfrastructure such as the TeraGrid and be able to project
clues about its environmental impact. As a result we have a positive impact
on how modern cyberinfrastructure and datacenters are utilized when clearly
confronted with metrics not related to performance or typical QoS methods, but
with metrics related to the environment.

Concretely, we design services for each of the metrics we are concerned
with. These SLA metric services and than be integrated as part of carefully
choreographed web services to utilize the information as part of specialized
environmental services to reduce the environmental impact of the infrastructure
whale at the same time achieving the tasks to be performed on user requests.
Two examples of such services have already been developed. A thermal aware
task scheduling service [25]and a dynamic voltage scheduling service [23].

4.1 Thermal aware task scheduling service

We developed thermal aware task scheduling algorithms, by predicating
resource temperatures based on online task-temperature profiles [25]. The algo-
rithms can be incorporated into a service providing a better carbon utilization for
a set of tasks to be scheduled. Important for this service is that an accurate record
of the improvements are kept in order to expose the environmental impact to the
requesting consumer service. This should be done not only on a single system
basis, but on a Grid wide basis so we can pick an environmentally friendly high
throughput scheme to minimize the environmental impact while completing all
tasks. We are currently developing some artificial intelligence techniques based
temperature prediction methods and data center thermal operation patterns.

www.manaraa.com

GreenIT Service Level Agreements 85

4.2 Dynamic voltage frequency scheduling service

Similar to our thermal aware task scheduling service we can leverage an
algorithm that we describe in [23]as part of a sophisticated service to to reduce
power consumption via the technique of Dynamic Voltage Frequency Scaling
(DVFS) of scheduling virtual machines by dynamically scaling the supplied
voltages. Some operating system level support for scientific applications are
being studied and developed, for example, DVFS enabled MPI applications and
multiple module compute intensive applications.

4.3 Integration services

To be successful, we need close integration with other service level agreement
component services to provide contract establishment, contract fulfillment, and
contract evaluation. The creation of a long-term knowledge base that we
can mine through service invocations is an essential part of this integrative
activity. Through this service we are able to assess potential service level
agreement candidates while at the same time minimizing failures during service
execution and service fulfillment. The integrative service will also have the
ability to establish a reputation of various services that are offered through it as
part of a brokering strategy. Middleware developers are able to register their
own services as part of the integration service and their effectiveness will be
measured automatically for a multitude of scenarios.

In general our services using this data are under development to serve as a
basis for a new generation of more efficient and environmental friendly data
centers and supercomputers. The access of the information is managed through
control list and group memberships within a federated security framework.
Data is exposed through enhanced Web Services following WS-* or the restful
service paradigm.

Our architecture to representing our GaaS services and framework is depicted
in Figure 2 and demonstrates the integration of the services that are needed to
choreograph a successful SLA.

4.4 Portal

A user portal is essential to display the information conveniently and to
interactively or programmatically mine it. Users of the GaaS portal will be
able to save a customized and state full view. We are using state-of-the-art
content management portals that are used by companies and millions of users.
The Portal components hosted as part of this effort will allow a much more
enhanced and dynamic experience while dealing with GreenIT data, in contrast
to just a simple portal framework that has become common today. One of the
important features will be that the community can contribute custom designed

www.manaraa.com

86 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

green components that can be integrated, even while using frameworks such as
Google gadgets. However, we have demonstrated over the last year advanced
features that allow us to expose an entire desktop framework through our portal.
Hence, we will develop a GeenIT GaaS desktop into a browser rather than just
focusing on developing portal tabs and components as shown in [22].

Figure 3. Cyberaide Green Portal

A screenshot of the integrative monitoring abilities of the portal is depicted
in in Figure 3 that shows a snapshot of the environmental control data from
the University of Buffalo as well as the calculations associated with it within
a simulation that predicts the environmental impact for a calculation to be
performed.

5. Conlusion

In this paper we documented our efforts on integrating GreenIT as part of a
SLA framework that considers environmental impact as part of the agreements.
We have conducted a number of significant efforts in developing algorithms
that can be integrated as part of services decreasing the environmental impact
without the knowledge of the users. However, it is important to also develop
contracts and services in which explicitly specify metrics unique to environmen-
tal impact factors. This allows us to address SLAs not only from an individual
server but also from a data center while solving not only a single calculation
but a suite of experiments. A history service is integrated into a knowledge
base that allows usto learn from past similar scheduled agreements and provide
better services in the future.

Acknowledgments

Work conducted by Gregor von Laszewski is supported (in part) by NSF
CMMI 0540076 and NSF SDCI NMI 0721656. We like to thank Tom Furlani
and the members of the CCI at University of Buffalo to provide us with the

www.manaraa.com

GreenIT Service Level Agreements 87

temperature data. We like to thank Andrew Younge and Casey Rathbone for
their help in finalizing this paper.

References

[1] Report to Congress on Server and Data Center Energy Efficiency. Available
from: http://www.energystar.gov/ia/partners/prod development/downloads/EPA Da tacen-
ter Report Congress Final1.pdf.

[2] SWaP (Space, Watts and Performance) Metric. Web Page. Available from:
http://www.sun.com/servers/coolthreads/swap/.

[3] Green IT definition. Webpage, May 2008. Available from:
http://en.wikipedia.org/wiki/Green computing.

[4] Green IT definition. Webpage, May 2008. Available from:
http://thefutureofthings.com/articles/1003/green-computing.html.

[5] Green IT definition. Webpage, May 2008. Available from:
http://www.webopedia.com/TERM/G/Green IT.html.

[6] California government goes green. Website, 2009. Available from:
http://www.arb.ca.gov/oss/green/greencites.htm.

[7] Data center humidity levels source of debate. Website, June 2009. Available from:
http://searchdatacenter.techtarget.com/news/article/0,289142,sid80 gci1261265,00.html.

[8] EU energy star. Website, 2009. Available from: http://www.eu-
energystar.org/en/en database.htm.

[9] Metrics and an API for Green Computing on the Cloud. Website, May 2009. Available
from: http://www.ogf.org/gf/event schedule/index.php?id=1704.

[10] Recommended Data Center Temperature & Humidity. Website, June 2009.
Available from: http://www.avtech.com/About/Articles/AVT/NA/All/-/DD-NN-AN-
TN/Recommended Computer Room Temperature Humidity.htm.

[11] C. Belady. The Green Grid Data center Efficiency Metrics: PUE and DCIE. Technical
report, The Green Grid, Feb. 2007.

[12] J. Espenshade, A. Pangborn, J. Cavenaugh, G. von Laszewski, and D. Roberts. Accelerat-
ing Partitional Algorithms for Flow Cytometry on GPUs. In The 7th IEEE International
Symposium on Parallel and Distributed Processing with Applications (ISPA-09), Chengdu
and Jiuzhai Valley, China, IEEE, August 2009.

[13] J. Haas et al. A Framework for Data Center Energy Productivity. Technical report, The
Green Grid, Feb. 2008.

[14] S. Fields. Hunting for Wasted Computing Power: New Software for Computing Networks
Puts Idle PC’s to Work. University of Wisconsin Research Sampler, 1993. Available from:
http://www.cs.wisc.edu/condor/doc/WiscIdea.html.

[15] Gridpedia. Service Level Agreements. Available from: http://www.gridipedia.eu/sla-
article.html.

[16] J. Kirk. EU to study energy use by data centers. Website, Feb. 2007. Available from:
http://www.networkworld.com/news/2007/022307-eu-to-study-energy-use.html.

[17] SOI. Service Level Agreements. Available from: http://sla-at-soi.eu/.

[18] G. Verdun. The Green Grid metrics: Data center infrastructure efficiency (DCiE) detailed
anaysis. Technical report, The Green Grid, Feb. 2007.

www.manaraa.com

88 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

[19] G. von Laszewski. An Interactive Parallel Programming Environment Applied in Atmo-
spheric Science. In G.-R. Hoffman and N. Kreitz, editors, Making Its Mark, Proceedings of
the 6th Workshop on the Use of Parallel Processors in Meteorology, pages 311–325, Read-
ing, UK, European Centre for Medium Weather Forecast, World Scientific. 2-6 December
1996.

[20] G. von Laszewski. A Loosely Coupled Metacomputer: Cooperating Job Submissions
Across Multiple Supercomputing Sites. Concurrency, Experience, and Practice, 11(5):933–
948, December 1999. The initial version of this paper was available in 1996.

[21] G. von Laszewski, B. Alunkal, and I. Veljkovic. Toward Reputable Grids. Scalable
Computing: Practice and Experience, 6(3):95–106, September 2005.

[22] G. von Laszewski, F. Wang, A. Younge, X. He, Z. Guo, and M. Pierce. Cyberaide
JavaScript: A JavaScript Commodity Grid Kit. In GCE08 at SC’08, Austin, TX, IEEE,
Nov. 16 2008. Available from: http://cyberaide.googlecode.com/svn/trunk/papers/08-
javascript/vonLaszewski-08-javascript.pdf.

[23] G. von Laszewski, L. Wang, A.J. Younge, and X. He. Power-Aware
Scheduling of Virtual Machines in DVFS-enabled Clusters. In IEEE Clus-
ter 2009, New Orleans, IEEE; 31 Aug. – Sep. 4 2009. Available from:
http://code.google.com/p/cyberaide/source/browse/trunk/papers/09-greenit-
cluster09/vonLaszewski-cluster09.pdf.

[24] D. Wang. Meeting green computing challenges. In International Symposium on High
Density packaging and Microsystem Integration, pages 1–4, June 2007.

[25] L. Wang, G. von Laszewski, J. Dayal, X. He, A.J. Younge, and T.R. Furlani.
Towards Thermal Aware Workload Scheduling in a Data Center. In Proceed-
ings of the 10th International Symposium on Pervasive Systems, Algorithms and
Networks (ISPAN2009), Kao-Hsiung, Taiwan, 14-16 December 2009. Available
from: http://cyberaide.googlecode.com/svn/trunk/papers/09-greenit-ispan1/vonLaszewski-
ispan1.pdf.

www.manaraa.com

EXTENDING WS-AGREEMENT WITH

MULTI-ROUND NEGOTIATION CAPABILITY

Angela Rumpl, Oliver Wäldrich, Wolfgang Ziegler
Department of Bioinformatics
Fraunhofer Institute SCAI
53754 Sankt Augustin, Germany
{angela.rumpl, oliver.waeldrich, wolfgang.ziegler}@scai.fraunhofer.de

Abstract The WS-Agreement specification of the Open Grid Forum defines a language
and a protocol for advertising the capabilities of service providers and creating
agreements based on templates, and for monitoring agreement compliance at run-
time. While the specification, which currently is in the process of transition from
a proposed recommendation of the Open Grid Forum to a full recommendation,
has been widely used after the initial publication in May 2007, it became obvious
that the missing possibility to negotiate an agreement rather than just accepting an
offer is limiting or inhibiting the use of WS-Agreement for a number of use-cases.
Therefore, the Grid Resource Allocation Agreement Working Group of the Open
Grid Forum started in 2008 to prepare an extension of WS-Agreement that adds
negotiation capabilities without changing the current specification in a way, which
leads to an incompatible new version of WS-Agreement. In this paper we present
the results of this process with an updated version of the specification in mind
and the first implementation in the European project SmartLM.

Keywords: Service Level Agreement, WS-Agreement, Negotiation

P. Wieder et al. (eds.), Grids and Service-Oriented Architectures for Service Level Agreements,
DOI 10.1007/978-1-4419-7320-7_9, © Springer Science+Business Media, LLC 2010

www.manaraa.com

90 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

1. Introduction

Service Level Agreements (SLA) are used in different domains and on dif-
ferent levels to establish agreements on the quality of a service (QoS) between
a service provider and a service consumer. SLAs can be based on general
agreements, e.g. framework agreements (paper contracts), that govern the rela-
tionship between parties, may include also legal aspects and may set boundaries
for SLAs. In this paper we only consider dynamic agreements, which are
created electronically on demand between programs acting on behalf of the
service provider and service consumer.

The WS-Agreement specification defines a language and a protocol for ad-
vertising the capabilities of service providers and creating agreements based on
templates, and for monitoring agreement compliance at runtime, thus, providing
an framework for creating SLAs. The specification has been published as a
proposed recommendation by the Open Grid Forum (OGF) May 2007 and
currently is in transition to becoming a full recommendation. WS-Agreement
has been and is widely used since 2006 in an number of European and Na-
tional projects [6, 11]. However, it turned out that the missing capability of
WS-Agreement for multi-round negotiation of the terms of an agreement limits
its usability for certain use cases where an agreement can not be reached in a
single step as stipulated by the current version of WS-Agreement. For example,
if the offer can not be fulfilled exactly by the provider but the provider would
benefit from making a counter offer indicating the terms of the service that
could be delivered. Or, the customer requires multiple services from different
providers to fulfill a single task, in which case the availability of the different
services has to be negotiated. Besides approaches to define more generic ne-
gotiation frameworks, e.g. in the context of the NextGRID project [10, 3] a
number of individuals and projects worked on extensions of WS-Agreement
over the last three years to overcome this limitation . Some of them focus on
the initial negotiation before an agreement is created [1, 4, 14, 9], while other
investigate solutions for re-negotiation to modify service level objectives at a
later stage when the agreement is in force already [5, 2]. Early 2008 the Grid
Resource Allocation Agreement Working Group (GRAAP-WG) of the Open
Grid Forum started to discuss and work on an extension of WS-Agreement that
adds negotiation capabilities taking into account the preparatory work men-
tioned before. The GRAAP-WG decided to stay in compliant to the current
specification and not to develop extensions, which lead to an incompatible new
version of WS-Agreement. In this paper we present the results of this process
with a updated and compliant version of the specification in mind and report
from the first implementation in the European project SmartLM.

The remainder of the paper is organized as follows. In Section 2 gives a
brief overview on core aspects of the current WS-Agreement Section specifi-

www.manaraa.com

Extending WS-Agreement with Multi-round Negotiation Capability 91

cation, Section 3 presents use-cases for negotiation. Protocol and messages
for negotiation of agreements are introduced in Section 4. Section 5 describes
the first implementation of the protocol in the European SmartLM project and
Section 6 concludes the paper and gives a brief outlook on future work.

2. WS-Agreement Version 1.0

In this section we present a brief overview of the current version of WS-
Agreement, e.g. the structure, the protocol, the state-machine.

The Web Services Agreement Specification Version 1.0 [13] from the Open
Grid Forum (OGF) describes a protocol for establishing an agreement on the
usage of Services between a service provider and a consumer. It defines a
language and a protocol to represent the services of providers, create agreements
based on offers and monitor agreement compliance at runtime. An agreement
defines a relationship between two parties that is dynamically established and
dynamically managed. The objective of this relationship is to deliver a service
by one of the parties. In the agreement each party agrees on the respective roles,
rights and obligations.

A provider in an agreement offers a service according to conditions described
in the agreement. A consumer enters into an agreement with the intent of ob-
taining guarantees on the availability of one or more services from the provider.
Agreements can also be negotiated by entities acting on behalf the provider
and / or the consumer. An agreement creation process usually consists of three
steps: The initiator (often the service or resource consumer) retrieves a template
from the responder (often the service or resource provider), which advertises
the types of offers the responder is willing to accept. The initiator then makes
an offer, which is either accepted or rejected by the responder.

Figure 1. WS-Agreement Version 1.0 state machine

www.manaraa.com

92 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

The underlying protocol as specified in WS-Agreement version 1.0 does
not contain elements to allow further negotiation based on an initial offer.
Especially, the responder has no possibility to reply with a counter offer, which
could express more precise the SLOs a provider is able to fulfill at that time.
Thus, once the initial offer is rejected by the responder, the only was to continue
for the initiator is guessing which part of the offer can not be fulfilled, modifying
the offer accordingly and sending the offer to the responder again. Obviously,
a tedious process with limited chances to reach an agreement especially if the
agreement contains variable terms that have to be agreed upon, e.g. the time
when a certain service is required, or if there are multiple QoS objectives to
be reached. The agreement states as proposed in the WS-Agreement protocol
version 1.0 are depicted in Figure 1.

An agreement consists of the agreement name, its context and the agreement
terms. The context contains information about the involved parties and metadata
such as the duration of the agreement. Agreement terms define the content of
an agreement: Service Description Terms (SDTs) define the functionality that
is delivered under an agreement. A SDT includes a domain-specific description
of the offered or required functionality (the service itself). Guarantee Terms
define assurance on service quality of the service described by the SDTs. They
define Service Level Objectives (SLOs), which describe the quality of service
aspects of the service that have to be fulfilled by the provider. The Web Services
Agreement Specification allows the usage of any domain specific or standard
condition expression language to define SLOs. The specification of domain-
specific term languages is explicitly left open.

3. Use-Cases for negotiation

In this section we present three use cases where negotiation is required to
create SLAs .

3.1 Co-allocation and Resource Reservation

When running a commercial application usually a valid license is required
for executing the application. This license has to be available, during the
application start-up for validation. When a job comprising the execution of such
a license is submitted to Grid or Cloud resources the middleware must provide
mechanisms to make sure, that the license is available at the execution site. In
order to avoid wasting resources, e.g. blocking the license from the moment
the job is submitted to the Grid middleware, co-ordination of reservation of
the computational resources and the license would be beneficial. Co-allocating
the computational resources and the license using advance reservation helps
achieving this goal. The reservation properties can be considered and expressed
as Quality of Service terms and SLAs are created for the reservation SLOs

www.manaraa.com

Extending WS-Agreement with Multi-round Negotiation Capability 93

once the service provider is able to fix and guarantee the reservation. In the
SmartLM project [12] this is done by the MetaScheduling Service (MSS), which
negotiates the time-slot with the scheduler of the resource providers and the
SmartLM License Management Service Service. After successful negotiation
the resources requested by the user both computational resources and the license
are reserved.

3.2 Agreement on multiple QoS Parameters

In an environment consisting of several clusters potentially operated in
different administrative domains SLAs might be used for co-allocation or the
resource allocation for workflows. A typical use-case is the co-allocation of
multiple computing resources with specific properties together with network
links with a dedicated QoS between these resources to run a distributed parallel
application. The user specifies his request and the resource orchestrator starts
negotiating with the local scheduling systems of the computing resources and the
network RMS (NRMS) in order to find a suitable time-slot where the availability
of all resources with the requested QoS parameters can be guaranteed for the
same time period. Once a common time-slot is identified the orchestrator
requires the reservation of the individual resources [7]. Again, the reservation
properties can be expressed as parameters of the QoS and an SLA is created
for the reservation. In the PHOSPHORUS project [8] this is done by the MSS,
which negotiates the time-slots and the QoS with the different schedulers of the
clusters and the NRMS and initiates the reservation of all resources requested
by the user. Another use-case is a workflow spanning across several resources.
The only difference to the use-case described before is the type of temporal
dependencies: While for the distributed parallel application the resources must
be reserved for the same time, for the workflow use-case the resources are
needed in a sequence given by the workflow.

3.3 Grid Scheduler interoperation

As there is no single orchestrating service or Grid scheduler in a Grid span-
ning across countries and administrative domains we have to deal with multiple
instances of independent Grid schedulers. Using resources from different do-
mains requires co-ordination across multiple sites. There are two approaches
either directly trying to negotiate with respective local scheduling systems or
negotiation with the respective local orchestrator. The former solution requires
local policies allowing a remote orchestrator to negotiate with local schedulers,
which is in general not the case. In the second case there is one access point to
the local resources, which then negotiates on behalf of the initiation orchestrator.
As the second approach also has a better scalability than the first one this ap-
proach is currently implemented in the German D-Grid project DGSI (D-Grid

www.manaraa.com

94 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

Scheduling Interoperability). For the communication between the different
orchestration services or Grid schedulers in D-Grid WS-Agreement has been
selected as language and protocol to create the SLAs.

4. Protocol and messages for WS-Agreement-Negotiation

The built-in negotiation capabilities of WS-Agreement as specified in version
1.0 are limited to a simple offer accept/reject procedure. Thus, either party can
send an offer and the respective other party may accept this offer or reject it.
To overcome this limitation, a negotiation process was defined by the GRAAP
working group of the Open Grid Forum that allows negotiation on top of
WS-Agreement without requiring incompatible changes of WS-Agreement.
The resulting protocol extensions are described in the following sections while
referring to the specifics of the SmartLM environment where appropriate. Figure
2 presents an overview of the negotiation process.

Figure 2. Overview of the negotiation process.

4.1 Initialisation of the negotiation process

First, the negotiation initiator initializes the process by querying a set of
SLA templates from agreement providers sending a standard WS-Agreement
message (the getResourceProperty request) to agreement providers. Within

www.manaraa.com

Extending WS-Agreement with Multi-round Negotiation Capability 95

the SmartLM environment, any resource scheduler or any client who wants
to reserve a license will be the negotiation initiator and any SmartLM server
can act as an agreement provider. In general, the agreement provider uses
site-specific mechanisms to advertise the available templates and to provide
access to them. The terms in the templates are site-specific, e.g. a resource
provider for computing resources would provide templates with using JSDL as
term language, while templates from a license server contain terms needed to
describe to licenses it manages. The initiator, in SmartLM the user, chooses
the most suitable template as a starting point for the negotiation process. Thus,
here the most suitable template is determined by the user who is expected to
select the template containing terms, e.g. properties of a license, which the user
intends to use. This template defines the context of the subsequent iterations.
All subsequent offers must refer to this agreement template. This is required in
order to enable an agreement provider to validate the creation constraints of the
original template during the negotiation process, and therefore the validity of
an offer.

4.2 Negotiation of the template

After the negotiation initiator has chosen an agreement template, it (the
user’s client acting as agreement initiator on behalf of the user now) will create
a new negotiation quote based on the chosen template. This quote must contain
a reference to the originating template within its context. Furthermore, the
agreement initiator may adjust the content of the quote, i.e. service description
terms, the service property terms, and the guarantee terms. These changes must
be done according to the creation constraints defined in the original template.

After the initiator created the negotiation quote according to its requirements,
it is send to responders via a negotiate message. Now the agreement provider
checks whether the service defined in the request could be provided or not. If
the service can be provided, it just returns an agreement template to the client,
indicating that an offer based on that template will potentially be accepted.
Otherwise, the provider employs some strategy to create reasonable counter
offers.

The relationship between dynamically created templates and original ones
must be reflected by updating the context of the new templates accordingly.
After creating the counter offers the provider sends them back to the negotiation
initiator (negotiate response).

WS-Agreement-Negotiation does not provide strategies for support of ne-
gotiations, this is beyond the scope of the specification. However, it provides
the basic multi-round negotiation mechanisms, which can be used to create
sophisticated strategies, like e.g. auctions or such developed in the agents
community.

www.manaraa.com

96 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

4.3 Post-processing of the templates

After the negotiation initiator received the counter offers (templates) from
the negotiation responder, it checks whether one or more meets its requirements.
Sending multiple counter offers allow to speed up the negotiation process but it
is not mandatory for the negotiation responder to send more than one counter
offer. If there is no such template, the initiator can either stop the negotiation
process, or start again from step 4.1. If there is an applicable template, the
initiator validates whether there is need for an additional negotiation step or
not. If yes, the initiator uses the selected template and proceeds with step 4.2,
otherwise the selected template is used to create a new SLA.

4.4 Negotiation Messages

New messages were defined as an extension of the WS-Agreement messages
to cover the negotiation process.

Listing 1: Negotiate Messages
<wsdl:message name="NegotiateInputMessage">

<wsdl:part element="wsag−neg:NegotiateInput" name="parameters"/>
</wsdl:message>

<wsdl:message name="NegotiateOuputMessage">
<wsdl:part element="wsag−neg:NegotiateResponse" name="parameters"/>

</wsdl:message>

To start the negotiation process, the initiator sends a NegotiateInputMessage.
The NegotiateInputMessage expects as Input a NegotiateInputType, which must
hold a NegotiationQuote.

The next listing describes the xml schema definition of the necessary types.
The NegotiateInputType contains a NegotiationQuote element, which is of type
AgreementType. The NegotiateOutputType contains an unbounded amount of
Template elements of type AgreementTemplateType.

Listing 2: Schema Types
<xs:element name="NegotiateInput" type="wsag−neg:NegotiateInputType"/>
<xs:element name="NegotiateResponse" type="wsag−neg:NegotiateOutputType"/>
<xs:element name="NegotiationQuote" type="wsag:AgreementType"/>
<xs:complexType name="NegotiateInputType">
<xs:sequence>

<xs:element ref="wsag−neg:NegotiationQuote" maxOccurs="1" minOccurs="1"/>
<xs:any namespace="##other" processContents="lax" maxOccurs="unbounded"

minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="NegotiateOutputType">

www.manaraa.com

Extending WS-Agreement with Multi-round Negotiation Capability 97

<xs:sequence>
<xs:element name="Template" type="wsag:AgreementTemplateType"

maxOccurs="unbounded" minOccurs="1"/>
<xs:any namespace="##other" processContents="lax" maxOccurs="unbounded"

minOccurs="0" />
</xs:sequence>

</xs:complexType>

5. Implementation of WS-Agreement-Negotiation in
SmartLM

In order to implement WS-Agreement and WS-Agreement-Negotiation, the
SmartLM component SLA and Negotiation Service uses the WS-Agreement
Framework for Java (WSAG4J) [4]. WSAG4J implements the basic features of
the WS-Agreement protocol and also the WS-Negotiation extension described
in Section 4. Furthermore, it uses a number of standards in conjunction with
WS-Agreement to provide a complete development framework for SLA based
services.

5.1 WS-Agreement Framework for Java (WSAG4J)

In WSAG4J agreements are created based on specific templates. Therefore,
a client queries the agreement templates from an agreement factory. Based on a
suitable template a client creates a new agreement offer, and may modify the
offer. The offer is then sent to the agreement factory that will create a new
agreement. It is also possible for the client to initialize a negotiation process by
sending a negotiation quote before creating an agreement offer.

When the WSAG4J agreement factory receives a create agreement request,
it will first lookup the template that was used to create the agreement offer.
This template must be specified within the agreement context of the agreement
offer. Each template is uniquely identified by its name and its template id. The
template id identifies the version of the template and the action used to create
the agreement.

The WSAG4J engine allows deploying a set of agreement factory actions
per agreement factory. Each factory action comprises a GetTemplateAction,
a NegotiateAction, and a CreateAgreementAction. The GetTemplateAction
returns exactly one agreement template. Therefore, one specific agreement
template is identified by its template name and its template id and maps exactly
to one specific agreement factory action.

Based on a specific template, either a negotiation process can be started,
or an agreement can be created. E.g. when a client creates a new agreement
offer based on an agreement template, the offer contains a reference to the
template within the AgreementContext. When a create agreement request
was received by a WSAG4J server, the WSAG4J engine will look up the

www.manaraa.com

98 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

associated agreement factory action, validate the incoming offer against the
creation constraints defined in the template that was used to create the offer, and
invoke the according CreateAgreementAction.

5.2 SLA and Negotiation Service

The SLA and Negotiation Service implements the WSAG4J engine and
exposes an agreement factory that provides to the user when requesting a
template exactly one agreement template. This template holds the xml structure
of a license agreement including creation constraints.

Figure 3. SmartLM implementation of WSAG4J engine

As we have exactly one template, we only need one agreement factory
action (see Figure3). To get the template, negotiate the template and to create
agreements, this agreement factory action provides the WSAG4J server actions:

GetLicenseTemplateAction implements GetTemplateAction to retrieve a li-
cense template.

NegotiateLicenseTemplateAction implements NegotiateAction to negotiate
the variables of a license template according to the creation constraints
before creating an agreement.

CreateLicenseAgreementAction implements CreateAgreementAction to fi-
nally create the agreement, which is based on the initial template and is
valid against all creation constraints specified in the initial template.

In the following sections, the complete SLA lifecycle is described in detail,
starting with describing an agreement template containing licenses and how it is
created, and going on with the complete negotiation process further describing
agreement creation and ending with agreement termination.

www.manaraa.com

Extending WS-Agreement with Multi-round Negotiation Capability 99

5.3 Creation of license agreement templates

In order to retrieve an agreement template the GetLicenseTemplateAction
is invoked. An agreement template is created that is uniquely identified by its
name and its id. Also the context of the template contains the name and id of
the template. This is required in order to lookup the template instance used to
create an agreement offer later on.

Creation constraints are added to depict the structure an agreement offer
must have. This allows (i) the client to create an appropriate agreement offer
the server may accept and (ii) the server to efficiently validate the offer.

In Figure 4 the structure of an agreement template structure is depicted. The
template is composed of the template name, its context, service description
terms (SDTs) and creation constraints.

Figure 4. Structure of a SmartLM license agreement template following the WS-Agreement
specification

The template can be seen as a form, which can be filled out by the user
to describe the application he wants to use. The service description term
“LicenseDescription” uses a newly developed language to describe this license.

5.4 Negotiation

As written in Section 4, the GRAAP group in OGF provides an extension of
WS-Agreement specification to support multi-round negotiation in addition to
the existing simple offer-accept/reject protocol. This extension is implemented
in WSAG4J and used in SmartLM to negotiate the terms of license usage. The
negotiation step is optional and can be skipped. Therefore, the client is also
allowed to directly create an agreement offer as described in Section 5.5.

After retrieving a license template from the server, the user can fill out the
template with regards to its needs. It is expected that the user knows which
application he wants to execute and that he is able to set the application name

www.manaraa.com

100 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

and its version and also the features of an application. This information could
e.g. be provided by the ISV of the application the user intends to execute.
Nevertheless it is also possible for the user to provide only the application
name and he will get back a license description which holds all details of
this application. To do so, it is necessary to specify a negotiation goal in the
second license description term (NegotiationGoal) of the template. Default
negotiation goal is “TIMESLOT”. This tells the server that the user wants to get
a free timeslot for his selected features and values. Another negotiation goal
is “FEATURES” which tells the server, that he needs to provide all features
with maximum values of an application. The application name can be a regular
expression and it is possible that there are several licenses which fulfill the
request (e.g. several versions of the application are available). In this case
the returned template contains several service description terms comprising
a license description. The user then needs to choose the right one from this
licenses.

When the user filled in the template, the client creates a NegotiationQuote
and sends it to the SLA and Negotiation Service (AgreementProvider). The
quote has the same structure as an agreement and is also based on the initial
template which is identified by the template id and name contained in the
context of the quote.

At this point the NegotiateLicenseAction is invoked, trying to create a suitable
template based on the quote. The license management service is queried to find
a suitable license and in case of “TIMESLOT” negotiation goal, also a suitable
timeslot for the requested application. The accounting and billing service is
queried to find out how much the execution of this application will cost. If all
requirements are fulfilled, a new Template is created and returned to the client.
Now the template is filled with a valid license description.

If this template suits the user, he will create an AgreementOffer and the
negotiation process is successfully completed. Otherwise the user may quit the
process, or try to further negotiate the template until the server can provide a
suitable template.

5.5 Agreement creation

The CreateLicenseAgreementAction is associated with the previously de-
fined license agreement template. It is invoked, when a valid agreement offer
was received. The template used to create an offer is identified by the tem-
plate name and id contained in the context of an agreement offer. Before the
CreateLicenseAgreementAction is invoked, the WSAG4J engine validates the
agreement offer against its creation constraints. And only if the offer is valid,
the CreateLicenseAgreementAction is invoked.

During invocation, the following actions will be accomplished:

www.manaraa.com

Extending WS-Agreement with Multi-round Negotiation Capability 101

Check policies The policy engine is queried to check if the user meets all
conditions to use the license.

License reservation If all creation constraints are fulfilled, the license ser-
vice is called in order to confirm the reservation of the license. Each
consumable feature will be blocked during the negotiated time frame.

Token creation Only when all features of the license were scheduled success-
fully, the license service creates a license token. This token is used later
on to run the Application.

Usage record creation An initial usage record describing the reserved license
is created to keep track of license usage. This record is sent to the Usage
Record Service, which notifies the Accounting and Billing system and
provides it upon request to the Accounting and Billing system.

Persistent storage of SLAs To make SLAs persistent and reliable they are
stored in the SmartLM Storage Service, which is responsible for storing
data permanently. In case of a system crash, the SLAs can be recovered
without losing any data

5.6 Agreement termination

If the user needs to terminate the agreement unexpectedly before the agree-
ment ends automatically, the following actions are performed: The license
service is called to cancel the reservation. He frees the reserved license features
and invalidates the license token. The Policy Engine is queried if the user has
to pay for the entire reservation or whether he is charged only what he used
until cancellation. If the user is only charged for the real license usage, the
accounting and billing system is queried to calculate the new price and a new
Usage Record is created holding the real license usage and the actual price.

6. Conclusions

We presented the first implementation of WS-Agreement-Negotiation, which
extends WS-Agreement allowing more sophisticated multi-round negotiations
between the service consumer and the service provider about the QoS of the re-
quested service. WS-Agreement-Negotiation has been realized by the SmartLM
project where it is used to negotiate the license terms and their temporal avail-
ability when the user requests a license from the license management service.
Additionally, WS-Agreement-Negotiation might also be used during run-time
of the application when it turns out, that the terms of the license need to be
modified. One major objective of this implementation was to provide a nego-
tiation protocol that does not break the existing WS-Agreement 1.0 protocol
or renders the schema of the templates incompatible with previous versions.

www.manaraa.com

102 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

In the background of this implementation SmartLM was closely cooperating
with the GRAAP-WG of the Open Grid Forum where the specification of a
negotiation protocol has been discussed and prepared over the last two years.
Jointly with the GRAAP-WG we created with this implementation the basis for
the specification of WS-Agreement-Negotiation that is currently prepared by the
GRAAP-WG to be submitted to the OGF editor as a proposed recommendation.

Besides the definition of the WS-Agreement-Negotiation specification we
focus our future work on the re-negotiation of SLAs already in force. This
work will also be driven by use-cases from the SmartLM project. In general the
problem we address is the following: After the initial negotiation of the terms of
a SLA, once the SLA is in force, it may happen that one of the agreement parties
needs to change the agreement for some reason. For example, the provider
receives a request for a service from a customer with a higher priority and
this request can only be fulfilled when modifying active agreements. Or, the
customer wants to extend the time he can use a certain service or increase the
resources for this service because it became obvious that obtaining tangible
results need more time or resources. Or, the other way round the results
delivered by the service are corrupt and the customer is interested to cancel the
SLA. In all of these cases the parties would benefit from the possibility to enter
a further negotiation phase for re-negotiating the SLA.

The GRAAP-WG already discussed several approaches for the re-negotiation
of SLAs. Again, as a precondition it was decided that WS-Agreement should
not be modified in an incompatible way when re-negotiation is introduced.
There are a number of boundary conditions, one of them being the fact, that the
original agreement keeps in force until it is superseded by a new one through
the re-negotiation process. This guarantees that whenever the re-negotiation
process fails or is aborted by one of the parties the original agreement binding
both parties is still in force.

Acknowledgments

Some of the work reported in this paper has been funded by the European
Commissions ICT programme in the FP7 project SmartLM under grant #216759.
Most of the parts dealing with WS-Agreement and WS-Agreement-Negotiation
directly stem from the work of the GRAAP-WG of the Open Grid Forum. In
particular many discussions of SLA negotiation in the GRAAP-WG finally led
to the draft specification, which has been implemented in SmartLM.

References

[1] F.M.T. Brazier, D.G.A. Mobach, and B.J. Overeinder. A WS-Agreement Based Resource
Negotiation Framework for Mobile Agents. In Scalable Computing Practice and Expe-
rience, Vol. 7(1), Warsaw School of Social Psychology, Poland, pages 23–36, March
2006.

www.manaraa.com

Extending WS-Agreement with Multi-round Negotiation Capability 103

[2] G. Di Modica, V. Regalbuto, O. Tomarchio, and L. Vita. Enabling re-negotiations of
SLA by extending the WS-Agreement specification. In IEEE International Conference on
Services Computing 2007 (SCC 2007), pages 248–251, July 2007.

[3] P. Hasselmeyer, H. Mersch, H.-N. Quyen, L. Schubert, B. Koller, and Ph. Wieder. Imple-
menting an SLA Negotiation Framework. Expanding the Knowledge Economy: Issues,
Applications, Case Studies, pages 154–161, 2007. ISBN: 978-1-58603-801-4.

[4] S. Hudert, H. Ludwig, and G. Wirtz. Negotiating Service Levels – A generic negotiation
framework for WS-Agreement. In Proceedings of the 20th International Conference on
Software Engineering and Knowledge Engineering, 2008. to appear.

[5] M. Parkin, P. Hasselmeyer, B. Koller, and P. Wieder. An SLA Re-negotation Protocol.
In Proceedings of the 2nd Non Functional Properties and Service Level Agreements in
Service Oriented Computing Workshop (NFPSLA-SOC’08) in conjunction with the 6th
IEEE European Conference on Web Services, Springer, 2008. to appear.

[6] M. Parkin, R.M. Badia, and J. Martrat. A Comparison of SLA Use in Six of the European
Commissions FP6 Projects. Technical Report TR-0129, Institute on Resource Management
and Scheduling, CoreGRID - Network of Excellence, April 2008.

[7] Ph. Wieder, O. Wäldrich, and W. Ziegler. A meta-scheduling service for co-allocating
arbitrary types of resources. In Proceedings of the 6th International Conference, Parallel
Processing and Applied Mathematics, PPAM 2005, LNCS, Vol. 3911, Poznan, Poland,
pages 782–791, Springer, September 2005.

[8] PHOSPHORUS – Lambda User Controlled Infrastructure for European Research, 2009.
http://www.ist-phosphorus.eu/.

[9] A. Pichot, Ph. Wieder, O. Wäldrich, and W. Ziegler. Towards dynamic Service Level
Agreement negotiation - an approach based on WS-Agreement". In Web information
systems and technologies, LNBIP, pages 107–119. Springer, 2009.

[10] C. Qu, L. Schubert, B. Koller, and Ph. Wieder. Towards Autonomous Brokered SLA
Negotiation. In Proceedings of the eChallenges Conference (e-2006), October 2006.

[11] J. Seidel, O. Wäldrich, Ph. Wieder, R. Yahyapour, and W. Ziegler. SLA for Resource
Management and Scheduling - A Survey. In Grid Middleware and Services: Challenges
and Solutions, CoreGRID series 8, Springer, 2008.

[12] SmartLM – Grid-friendly software licensing for location independent application execu-
tion, 2009. http://www.smartlm.eu/.

[13] Web Service Agreement (WS-Agreement). Grid Forum Document, GFD.107, proposed
recommendation, Open Grid Forum. URL: http://www.ogf.org/documents/GFD.107.pdf.

[14] W. Ziegler, Ph. Wieder, and D. Battré. Extending WS-Agreement for dynamic negoti-
ation of Service Level Agreements. Technical Report TR-0172, Institute on Resource
Management and Scheduling, CoreGRID - Network of Excellence, August 2008.

www.manaraa.com

ENABLING OPEN CLOUD MARKETS THROUGH

WS-AGREEMENT EXTENSIONS

Marcel Risch, Jörn Altmann
Seoul National University, San 56-1, Sillim-Dong, Gwanak-Gu, Seoul, 151-742, South-Korea
marcel.risch@temep.snu.ac.kr

jorn.altmann@acm.org

Abstract Research into computing resource markets has mainly considered the question
of which market mechanisms provide a fair resource allocation. However, while
developing such markets, the definition of the unit of trade (i.e. the definition
of resource) has not been given much attention. In this paper, we analyze the
requirements for tradable resource goods. Based on the results, we suggest a
detailed goods definition, which is easy to understand, can be used with many
market mechanisms, and addresses the needs of a Cloud resource market. The
goods definition captures the complete system resource, including hardware spec-
ifications, software specifications, the terms of use, and a pricing function. To
demonstrate the usefulness of such a standardized goods definition, we demon-
strate its application in the form of a WS-Agreement template for a number of
market mechanisms for commodity system resources.

Keywords: Grid economics, unit of trade, system resource trading, Cloud computing market,
system virtualization, contract templates, WS-agreements, service level contract,
Cloud economics.

P. Wieder et al. (eds.), Grids and Service-Oriented Architectures for Service Level Agreements,
DOI 10.1007/978-1-4419-7320-7_10, © Springer Science+Business Media, LLC 2010

www.manaraa.com

106 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

1. Introduction

There have been many proposals for Grid markets, such as Spawn [1], Tycoon
[2], GRACE [3], GridEcon [4], and MACE [5]. The main goal of these projects
was to develop a market mechanism, which would allow for an efficient and
fair allocation of computing resources. To achieve this goal, some projects have
decided to focus on the most important aspect of a computing resource: its
computational power.

These simplifications were acceptable since some applications predominantly
require computing power. Furthermore, since designing a market mechanism
for complex goods is difficult, initial simplifications had to be made for imple-
menting a proof-of-concept. However, since the development of computing
resource markets has progressed and a number of commercial offerings are now
available, these simplifications must be removed and the tradable good must be
described in its entirety to ensure that traders in a computing resource market
can describe their offers and demands accurately. In this paper, we propose a
detailed definition of a general scheme for defining computing resources (i.e.
units of trade) that consists not only of the hardware but also of software and the
terms of use. A complete resource contract, which can also be called Service
Level Agreement, contains the definition of system resources, the software
purchased with it (if applicable), the pricing function, and the guarantees given
by the provider. Such a contract would capture all aspects that are relevant to
trading of Cloud resources.

Traditionally, the guarantees given by the provider and the duties of both
providers and buyers have been captured by Service Level Agreements (SLAs).
While many works on computing resource markets assume the existence of
Service Level Agreements [6–7], there is very little work on the exact definition
of a SLA for resources. The best attempt has been made by the OGF GRAAP
working group [8], which provided the WS-Agreement scheme [9]. However,
this scheme is not aimed at system resources in particular but rather at general
services. We will demonstrate how WS-Agreement can be used as a basis for
developing a Computing Resource Definition Language (CRDL), which can
be used in the setting of computing resource markets. Finally, we show how
this new WS-Agreement extension can be used in a number of different market
mechanisms and show that such a resource description will simplify resource
trading.

2. State of the Art

2.1 WS-Agreement

WS-Agreement was developed to allow service consumers and service
providers to form contracts which specify the service details, the guarantees,

www.manaraa.com

Enabling Open Cloud Markets Through WS-Agreement Extensions 107

the obligations, and the penalties for each party concerned. This is, of course,
exactly what is needed in Cloud computing markets, since Cloud computing
resources are services.

WS-Agreement comprises three major sections: Name, Context, and Terms.
The Name section contains the optional name of the agreement and a unique ID.
In the Context section, information about the service provider and consumer
are noted, as well as the expiration time of the agreement. The Terms section
contains information about the service terms and the guarantees. The service
terms describe the service in as much detail as possible, while the guarantees
describe which minimum performance the service will provide.

In general, WS-Agreement can be used to describe services of any kind.
At the same time, it also implements a negotiation model for negotiating an
agreement. This versatility should make WS-Agreement a very useful tool in
open Cloud markets. However, the fact that WS-Agreement is not intended to
be specific to any type of market makes it very difficult to use for computing
services. We therefore will use the basic structure of WS-Agreement to develop
a Computing Resource Definition Language (CRDL), which can be used in
Cloud computing markets.

2.2 Existing Commercial Cloud Offers

In recent years, a large number of commercial Cloud providers have entered
the utility computing market, using virtualization. Now, there are a number of
different types of services which are sold under the label of "Cloud Computing".
On the one hand, there are resource providers, such as Amazon (e.g. EC2
[10]) and Tsunamic Technologies [11], who provide computing resources. On
the other hand, there are providers, who not only sell their own computing
resources but also their own software services, such as Google Apps [12]and
Salesforce.com [13]. Furthermore, there are companies that attempt to run a
mixed approach, i.e. they allow users to create their own software services but,
at the same time, the company offers various support services (i.e. platform
services) to its customers. An example of such an approach is the Sun N1 Grid
[14].

Looking at these resource providers, it should be noted that none of them
use WS-Agreement to describe the SLAs. Instead, some of these providers use
their legal staff to draft the SLA in human-readable format [15]. Others, such
as Sun and Tsunamic Technologies, do not even provide SLAs publicly. The
fact that these providers do not use WS-Agreement for their SLAs indicates
that WS-Agreement still has some major shortcomings.

www.manaraa.com

108 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

2.3 Open Cloud Market Enablers

In addition to the introduction of virtualization in data centers, several com-
panies (e.g. Enomaly [16]or Fluid Operations [17]) now offer platforms to
integrate in-house resources with externally purchased Cloud resources. These
products not only allow users to turn their data center into a Cloud but also
allow users to act as providers for resource services. Using such software, data
center operators could easily be encouraged to participate in an open Cloud
market, since the integration of internal and external resources is simplified.

A company that follows this idea is Zimory [18]. Its product turns a regular
data center into an intra-company Cloud, allowing an efficient use of resources.
In addition, Zimory also allows its costumers to sell spare capacity via its own
marketplace. During times of high demand, of course, resources can then be
purchased via the Zimory Cloud.

At this time, none of these companies seem to offer the capability to use any
kind of SLAs with their services. However, if an open Cloud market were to
be established, provisions for legally binding contracts would have to be made.
Since WS-Agreement already uses a very clear structure, this template could be
adapted to be more suitable for Cloud resources.

2.4 Computing Resource Markets Research

The research into system resource markets can be divided into two groups,
when looking at their description of tradable goods. The first group does not
define goods at all, while the second group focuses on one aspect of a computing
resource only.

The first group consists to a large extend of early Grid market designs.
Examples for these early designs are GRACE and designs by Buyya [19]. In
these early designs, the analysis of Grid market entities and the architecture of
such a market have been analyzed. However, the good "computing resource"
has not been defined. Since the tradable good has not been considered, the
question of how the contractual obligations can be defined has also not been
addressed.

The second group of Grid market research has simplified the computing
resource good. The MACE exchange takes a small step away from the initial
market architectures [5]. The authors recognize the importance of developing a
definition for the tradable good. However, they abstract computing resources
into services that can be traded; the actual definition has never been supplied.

Another approach, which was taken by several research groups, was the focus
on computing power, either in the form of Java OPerations (JOPs) within the
Popcorn market [20], or in the form of CPU slices within the Spawn market [1].
These goods are very restrictive, since they require detailed knowledge about

www.manaraa.com

Enabling Open Cloud Markets Through WS-Agreement Extensions 109

the factors (e.g. application requirements, the compiler vendor, the instruction
sets of the CPU) that influence the amount of computing power needed.

Lastly, there is the Tycoon market [2], which was developed before virtual-
ization tools (e.g. Xen [21]) became widely used. The initial stages worked
with basic computing cycles and it was planned to extend this market by making
use of virtualization. However, it seems that the effort has been discontinued.

Overall, much of the resource market research has worked with either sim-
plified definitions of the tradable good or without defining the good at all.
Therefore, since Grid research did not provide any foundation for defining
a computing resource good, we will use WS-Agreement to develop such a
definition. WS-Agreement was chosen for its flexibility: it will be used as a
basis for developing a Computing Resource Definition Language, keeping the
structure of WS-Agreement but expanding it to describe resources in detail.
The usefulness of WS-Agreement for defining extensions has been shown quite
frequently [22–24].

3. Extending WS-Agreement

3.1 Diversity of Goods

In an open market environment, diverse computing resources have to be
described in a common format so that customers can determine the differences
between various resource offers. This diversity may seem daunting at first but
it should be remembered that trading diverse resources is already possible in
practice for other goods. Looking at the Chicago Mercantile Exchange (CME)
[25], we can see that even diverse products such as live cattle can be traded.
Since live animals are extremely diverse, the trading contracts are very detailed,
including penalties and obligations, as the following example shows:

"A par delivery unit is 40,000 pounds of USDA estimated Yield Grade 3,
55% Choice, 45% Select quality grade live steers, averaging between 1,100
pounds and 1,425 pounds with no individual steer weighing more than 100
pounds above or below the average weight for the unit. No individual animal
weighing less than 1,050 pounds or more than 1,475 pounds shall be deliverable.
Par delivery units shall have an estimated average hot yield of 63%. [...] Steers
weighing from 100 to 200 pounds over or under the average weight of the steers
in the delivery unit shall be deliverable at a discount of 3c per pound, provided
that no individual animal weighing less than 1,050 or more than 1,475 pounds
shall be deliverable." (pg. 3, [26])

This principle of a complete contract should be adopted for infrastructure
markets so that all parties (buyers and sellers) involved in the trade can easily
understand the properties of the traded good and have a common reference to
the traded resource.

www.manaraa.com

110 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

3.2 Composition of the Service Level Contract

The benefits of using WS-Agreement to compose Service Level Contracts
lies in the fact that WS-Agreement already comprises all categories necessary
for describing a computing resource definition. Therefore, all that has to be done
is to extend WS-Agreement in such a way that it becomes more specific. All
excerpts from WS-Agreement in this chapter have been taken from [27]. The
basic structure of WS-Agreement consists of a Name, an AgreementContext,
and a Terms section. In a market environment, in which the resource definitions
are managed centrally, the agreement name will be specified in advance. The
agreement ID will only be created when a buyer and seller decide to trade
resources.

3.2.1 Agreement Context. The AgreementContext section contains
information about the service provider and the agreement initiators and respon-
dents. The full specification of the AgreementContext section is shown below
(note, all extensions to the WS-Agreement that we suggest are indicated in italic
throughout the remainder of the paper):

Figure 1. General Structure of WS-Agreement.

The AgreementInitiator and AgreementResponder sections will have to be filled
according to the market mechanism, but can be left blank if they are not needed.
The Service Provider section, as well as the newly created ServiceConsumer
section, will be filled with information about the service provider and the service
consumer, respectively. Both fields are mandatory.

The StartingTime section allows for future delivery of the service. Since
even spot market sales have a lag time, which allows the provider to set up
the resources, this starting time is vital to ensure that the agreement covers
the relevant time schemes. We also introduced an EndingTime section, which
denotes the time at which the resources revert to their owner. Both these fields

www.manaraa.com

Enabling Open Cloud Markets Through WS-Agreement Extensions 111

are obligatory. The PurchaseTime section describes the time of purchase of the
SLA. This is necessary for some pricing function as explained in section 3.2.4.

The ExpirationTime section will be filled in according to the expiration time
of the contract. This time must be at least the same time as the ending time to
ensure that the contract is valid for the entire duration of the resource usage.
The TemplateID and TemplateName sections will be filled as needed.

3.2.2 Terms. The Terms section defines both the service that is traded,
as well as the guarantees that the provider is willing to make. Furthermore, this
section can contain a description of the penalties as well as a description of the
restrictions. The Terms section contains elements for the service description,
service reference, service properties, and the guarantee terms.

For computing resources, the ServiceDescriptionTerm section can be used to
describe the physical resource with respect to CPU, main memory, hard disk,
and the network. A detailed description of a resource is shown below on the
left.

<xs:complexType name=”ServiceDescriptionTerm”>
<xs:sequence>

<xs:complexType name=”Resource”>
<xs:sequence>

<wsag:ExactlyOne>
<xs:element name="Processor"
type="wsag:ProcessorType"/>
<xs:element name="MainMemory"
type="wsag:MainMemoryType"/>
<xs:element name="HDD"
type="wsag:HDDType"/>
<xs:element name="Network"
type="wsag:NetworkType"/>
<xs:element name="BusSpeed"
type="wsag:BusSpeedType"/>
<xs:element
name="NumberOfResources"
type="xs:integer"/>

</wsag:ExactlyOne>
</xs:sequence>

</xs:complexType>
</xs:sequence>
</xs:complexType>

<xs:element name="Processor">
<xs:complexType>

<xs:sequence>
 <wsag:ExactlyOne>

<xs:element name="Brand" type="xs:string"/>
<xs:element name="ProcessorName"
type="xs:string"/>
<xs:element name="NumberOfCores"
type="xs:integer"/>
<xs:element name="ProcessorSpeedGHz"
type="xs:decimal"/>
<xs:element name="L1CacheMB"
type="xs:decimal"/>
<xs:element name="L2CacheMB"
type="xs:decimal"/>
<xs:element name="FSBMHz"
type="xs:decimal"/>

</wsag:ExactlyOne>
</xs:sequence>

 </xs:complexType>
</xs:element>

Figure 2. ServiceDescriptionTerm and processor definition.

Most of these complex types will have to be expanded. On the right-hand side
of Figure 2, we demonstrate how the processor can be described in detail. In
Figure 3, we show how the network access and the software parameters can be
described.

Figure 3. Description of network and software.

www.manaraa.com

112 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

On the left side of Figure 4, the main memory is specified; on the right side, the
hard disk can be specified.

Figure 4. Description of memory and hard disk.

The software section describes whether a virtualization tool was used to create
the resource, and if so, which types of software containers can be run on the
resource. This allows the user to determine whether this resource is capable of
running software containers already owned by the user, or if new containers
have to be created. Furthermore, if the provider desires, this category can also
describe which operating systems can run on the resource or is pre-installed.
This is especially important if virtualization tools are used, since these tools
place some restrictions on the operating systems that can be deployed. In
addition, this category can describe whether static or dynamic IP addresses are
used.

3.2.3 Guarantee Terms. The GuaranteeTerms section describes the
guarantees the service provider will have to give. In the case of computing
resources, the resource description given in the ServiceDescription section is a
minimum performance that must be provided. To see how the WS-Agreement
GuaranteeTerms can be extended, we will have to look at this section in more de-
tail. The GuaranteeTerms consists of the ServiceScope section, the Qualifying-
Condition section, the ServiceLevelObjective section and the BusinessValueList
section.

The ServiceScope describes to which element of the service term the guaran-
tee applies (e.g. for software services, one element could be the response time).
In the case of computing resources, the guarantees cover all parameters of the
computing resource as a whole. The QualifyingCondition section describes
when a guarantee starts to apply. In the case of computing resources, this is
the moment when the user is given control of the resource. The ServiceLevel-
Objectives section describes when a guarantee is considered to be met. In the

www.manaraa.com

Enabling Open Cloud Markets Through WS-Agreement Extensions 113

case of computing resources, this is the case if the resource is available for the
specified amount of time and if all parameters in the description are met, e.g.
the processor speed is correct and memory size is correct.

The BusinessValueList section describes penalties and rewards. It consists of
the Importance, Penalty, Reward, Preference and CustomBusinesValue sections.
The Importance section describes the importance of a given business value.
This can be filled in, if the providers or consumers so desire.

The Rewards section describes the reward that could be incurred for meeting
an objective. In the case of computing resources, this could be the price that
has to be paid by the consumer for using the specified resource. The Preference

Figure 5. Reward and Preference sections.

section is used in cases where multiple business values apply to the service at
the same time. In such a case, the preference indicates which business value
should be used. In the case of computing resources, this section expresses
pricing and multiple pricing models can be ranked according to their preference.
This allows for different pricing models to be applied to different usage and
quality levels. Note, if multiple prices apply for the same usage, the consumer
will have to pay all fees.

The Penalty section describes the obligations of consumers and providers. In
this case, consumers and providers can be held accountable, if certain conditions
are not met. In the case of computing resources, these conditions can be quite
diverse, ranging from limiting usage of hardware to excluding certain hardware
infrastructures entirely from some customers. The definition of the Penalty
section follows the one of the Reward section and uses the structure of the
Preference section. If a Reward section and a Penalty section exist with the
service level contract, two BusinessValueList sections have to be filled out.

The CustomBusinessValues section can be used to describe usage restrictions
and responsibilities of the consumer. These are vital to the contract, since many
aspects of the resource usage can be affected by these rules.

www.manaraa.com

114 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

4. CRDL in Different Market Mechanisms

The BusinessValueList section describes penalties and rewards. It consists of
the Importance, Penalty, Reward, Preference and CustomBusinesValue sections.
The Importance section describes the importance of a given business value.
This can be filled in, if the providers or consumers so desire.

4.1 Posted Price

In a posted price market, providers are free to create any resource types,
which they deem to be tradable. These freely created resource types can also
come with highly individualized Terms of Use. For the Computing Resource
Definition Language, this means that the Terms section would, in all likelihood,
be different for different providers. However, in order to achieve understandabil-
ity, the Terms would link to an external reference, where the Terms are written
in natural language and can be seen by consumers.

In a posted price market environment, the offers could be centrally listed and
potential customers can then search these offers based on their unit-of-trade
requirements. Such matching procedures have been proposed in [28]. Using
the CRDL, this search procedure will be simplified, since the vital parameters
can be easily compared.

4.2 Negotiation Environment

In a negotiation process, a provider and consumer can negotiate the different
categories of the computing resource contract individually. Should the need
arise, both parties can even negotiate the individual aspects of each of the four
contract categories. In this case, the contract template helps both parties to
structure their negotiation process.

Therefore, the CRDL does not hinder the bargaining partners to negotiate
each aspect of a resource. Instead it simplifies the procedure if both parties can
agree on standard components. In fact, any mix of standard and individualized
components can be combined to form a new contract. Further simplifications
are achieved by the fact that WS-Agreement already includes some tools for
negotiations which can be used by the trading parties. Furthermore, the flexible
pricing section allows both parties to define different prices for individual
components. This will ensure that the negotiating parties can be certain that
their pricing requirements are met.

4.3 Single Auction

In a single auction, the provider simply posts the service level contract
without setting the price of the good. The resource consumer searches for
suitable resources being currently auctioned and bids for resources using his

www.manaraa.com

Enabling Open Cloud Markets Through WS-Agreement Extensions 115

bidding strategy. Depending on the auction, the consumer bids for the good and,
if he wins, gives the purchase price to the auctioneer. The final service level
agreement comprises the service level contract filled with the price associated
with the winning bid of the consumer.

The advantage of using CRDL contracts lies in the easy-to-understand de-
scription of the traded good. The consumer can easily determine which ca-
pabilities each resource has and what the provider is willing to guarantee.
Furthermore, since the good is fully described and perhaps only the price is
missing, the auction procedure does not need to be adapted to be able to work
with other goods of this type of good. Therefore, any existing auction market
can work with CRDL. The bid would be a simple value pair <contract ID,
price>.

4.4 Discussion of the Computing Resource Definition
Language

All market mechanisms use the same template to define the tradable good,
i.e. the computing resource. While some market mechanisms, such as single
auctions, require such a stringent structure, others are more lenient. Since
WS-Agreement is used as a basis, traders will easily understand the structure.
Furthermore, if the restrictions, penalties and responsibilities are defined in
legal terms, the existing template can then be taken to court.

The comparability requirement of different Computing Resource Contracts is
provided not only through a standard format, but also through the same structure
of all contracts. This means that the important aspects of each contract can be
easily found and can then be compared. However, this requires additional effort
in standardizing SLAs, which has been started within the SLA framework of
OGF [9].

The flexibility of CRDL is given by the fact that it can represent a large
number of different resources types. This structure of a contract allows for
individual parts to be, to some extent, standardized. The individual parts can
still be combined in many ways to form contracts.

Since CRDL allows a wide array of resources to be described and resource
descriptions with CRDL are understandable by all parties, comparisons of units
of trades will be simple. Therefore, it is likely that the resource descriptions
with CRDL will be accepted by a large number of users.

5. Conclusion and Future Work

In this paper, we have introduced the Computing Resource Definition Lan-
guage (CRDL), an extension to WS-Agreement. It is aimed at capturing the
complexity of system resources in a single descriptor, which can be traded in
many market environments. The usefulness of this extension has been discussed

www.manaraa.com

116 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

by showing its application to different market mechanisms. The main goal was
to enhance the usefulness of WS-Agreement for markets where many different
market mechanisms can exist. In particular, we showed how CRDL can be
applied to utility computing markets for virtualized goods.

References

[1] C.A. Waldspurger, T. Hogg, B.A. Huberman, J.O. Kephart, W.S. Stornetta. Spawn: A Dis-
tributed Computational Economy. IEEE Transactions on Software Engineering, 18(2):103–
117, Februar 1992.

[2] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B.A. Huberman. Tycoon: An implementation
of a distributed, market-based resource allocation system. Multiagent Grid Syst. 1(3):169–
182, August 2005.

[3] R. Buyya, D. Abramson, and J. Giddy. An economy grid architecture for service-oriented
grid computing. 10th IEEE International Heterogeneous Computing Workshop (HCW
2001), San Francisco, CA, IEEE Computer Society Press: Los Alamitos, April 2001.

[4] J. Altmann, C. Courcoubetis, M. Dramitinos, G.D. Stamoulis, T. Rayna, M. Risch, C.
Bannink. A Market Place for Computing Resources. GECON 2008, Workshop on Grid
Economics and Business Models, Las Palmas, Spain, LNCS, Springer, August 2008.

[5] B. Schnizler, D. Neumann, D. Veit, C. Weinhardt. Trading Grid Services - A Multi-attribute
Combinatorial Approach. European Journal of Operational Research, 187(3):943–961,
2008.

[6] M. Macias, G. Smith, O.F. Rana, J. Guitart, J. Torres. Enforcing Service Level Agreements
using an Economically Enhanced Resource Manager. In: Workshop on Economic Models
and Algorithms for Grid Systems (EMAGS 2007), Texas, USA, 2007.

[7] A. Sahai, S. Graupner, V. Machiraju, and A. Moorsel. Specifying and Monitoring Guaran-
tees in Commercial Grids through SLA. In Proceedings of the 3rd international Sympo-
sium on Cluster Computing and the Grid (May 12 - 15, 2003). CCGRID. IEEE Computer
Society, Washington, DC, 2003.

[8] The Open Grid Forum (OGF), http://www.ogf.org/, 2008.

[9] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne, J.
Rofrano, S. Tuecke, and M. Xu. Web Services Agreement Specification (WS-Agreement).
GWD-R (Proposed Recommendation), Open Grid Forum, 2007.

[10] Amazon Elastic Compute Cloud (Amazon EC2), http://aws.amazon.com/ec2/, 2009.

[11] Tsunamic Technologies Inc., http://www.clusterondemand.com/, 2008.

[12] Google Apps, http://www.google.com/apps/, March 2009.

[13] Salesforce.com, http://www.salesforce.com, March 2009.

[14] Sun Grid, http://www.sun.com/service/sungrid/index.jsp, 2008.

[15] Amazon, EC2 SLA, http://aws.amazon.com/ec2-sla/, 2009.

[16] Enomaly, http://www.enomaly.com/, 2008.

[17] fluid Operations, http://www.fluidops.com, 2009.

[18] Zimory, http://www.zimory.com/, 2009.

[19] R. Rajkumar and S. Vazhkudai. Compute Power Market: Towards a Market-Oriented Grid.
First IEEE International Symposium on Cluster Computing and the Grid (CCGrid’01),
page 574, 2001.

www.manaraa.com

Enabling Open Cloud Markets Through WS-Agreement Extensions 117

[20] O. Regev and N. Nisan. The POPCORN market-an online market for computational
resources. In Proceedings of the First international Conference on information and Com-
putation Economies (Charleston, South Carolina, United States, October 25 - 28, 1998),
ICE ’98, pages 148–157, ACM, New York, NY, 1998.

[21] XenSource, Inc., http://xen.org/, 2008.

[22] M.A. Oey, R.J. Timmer, D.G. Mobach, B.J. Overeinder, and F.M. Brazier. WS-Agreement
based resource negotiation in AgentScape. In Proceedings of the 6th international Joint
Conference on Autonomous Agents and Multiagent Systems (Honolulu, Hawaii, May 14 -
18, 2007), AAMAS ’07, ACM, New York, NY, 2007.

[23] C. Müller, O. Martín-Díaz, A. Ruiz-Cortés, M. Resinas, and P. Fernandez. Improving
Temporal-Awareness of WS-Agreement. In Proceedings of the 5th international Confer-
ence on Service-Oriented Computing (Vienna, Austria, September 17 - 20, 2007). B.J.
Krämer, K. Lin, and P. Narasimhan, (eds.), LNCS, Vol. 4749, pages 193–206, Springer-
Verlag, Berlin, Heidelberg, 2007.

[24] W. Jouve, J. Lancia, C. Consel, and C. Pu. A Multimedia-Specific Approach to WS-
Agreement. Fourth IEEE European Conference on Web Services (ECOWS’06), pages
44–52, 2006.

[25] Chicago Mercantile Exchange, http://www.cme.com/, 2008.

[26] CME Rulebook, http://www.cmegroup.com/cmegroup/rulebook/CME/II/100/101/101.pdf,
2008.

[27] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano, S.
Tuecke, and M. Xu. Web Services Agreement Specifcation (WS-Agreement), Version
2005/09, http://www.ggf.org.

[28] H.K. Bhargava and A. Bagh. Tarif Structures for Pricing Grid Computing Resources. In
Gecon 2006, 2006.

www.manaraa.com

SERVICE MEDIATION AND NEGOTIATION

BOOTSTRAPPING AS FIRST ACHIEVEMENTS

TOWARDS SELF-ADAPTABLE CLOUD SERVICES

Ivona Brandic, Dejan Music, Schahram Dustdar
Institute of Information Systems, Vienna University of Technology
Argentinierstraße 8, 1040 Vienna, Austria
{ivona,dejan,dustdar}@infosys.tuwien.ac.at

Abstract Nowadays, novel computing paradigms as for example Cloud Computing are
gaining more and more on importance. In case of Cloud Computing users pay
for the usage of the computing power provided as a service. Beforehand they
can negotiate specific functional and non-functional requirements relevant for the
application execution. However, providing computing power as a service bears
different research challenges. On one hand dynamic, versatile, and adaptable
services are required, which can cope with system failures and environmental
changes. On the other hand, human interaction with the system should be min-
imized. In this chapter we present the first results in establishing adaptable,
versatile, and dynamic services considering negotiation bootstrapping and service
mediation achieved in context of the Foundations of Self-Governing ICT Infras-
tructures (FoSII) project. We discuss novel meta-negotiation and SLA mapping
solutions for Cloud services bridging the gap between current QoS models and
Cloud middleware and representing important prerequisites for the establishment
of autonomic Cloud services.

Keywords: Autonomic SLA Management, Meta-Negotiations, SLA Mapping, Negotiation
Frameworks, Cloud Computing

P. Wieder et al. (eds.), Grids and Service-Oriented Architectures for Service Level Agreements,
DOI 10.1007/978-1-4419-7320-7_11, © Springer Science+Business Media, LLC 2010

www.manaraa.com

120 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

1. Introduction

Service-oriented Architectures (SOA) represent a promising approach for
implementing ICT systems [4]. Thereby, software is packaged to services and
can be accessed independently of the used programming languages, protocols,
and platforms. Despite remarkable adoption of SOA as the key concept for
the implementation of ICT systems, the full potential of SOA (e.g., dynamism,
adaptivity) is still not exploited [19]. SOA approach and Web service tech-
nologies represent large scale abstractions and a candidate concept for the
implementation novel computing paradigms where sophisticated scientific ap-
plications can be accessed as services over Internet [1, 5] or where massively
scalable computing is made available to end users as a service as in case of
Cloud Computing [10]. In all those approaches the access to computing power
is provided as a service.

The key benefits of providing computing power as a service are (a) avoidance
of expensive computer systems configured to cope with peak performance,
(b) pay-per-use solutions for computing cycles requested on-demand, and (c)
avoidance of idle computing resources. The development of novel concepts for
dynamic, versatile, and adaptive services represents an open and challenging
research issue [16]. Major goal of this chapter is to facilitate service negotiation
in heterogeneous Clouds. In order to enable service users to find services which
best fit to their needs (considering costs, execution time and other functional
and non-functional properties), service users should negotiate and communicate
with numerous publicly available services.

Non-functional requirements of a service execution are termed as Quality
of Service (QoS), and are expressed and negotiated by means of Service Level
Agreements (SLAs). SLA templates represent empty SLA documents with all
required elements like parties, SLA parameters, metrics and objectives, but
without QoS values [12]. However, most existing Cloud frameworks assume
that the communication partner knows about the negotiation protocols before
entering the negotiation and that they have matching SLA templates. In commer-
cially used Clouds this is an unrealistic assumption since services are discovered
dynamically and on demand. Thus, so-called meta-negotiations are required to
allow two parties to reach an agreement on what specific negotiation protocols,
security standards, and documents to use before starting the actual negotiation.
The necessity for SLA mappings can be motivated by differences in terminology
for a common attribute such as price, which may be defined as usage price on
one side and service price on the other, leading to inconsistencies during the
negotiation process.

Thus, we approach the gap between existing QoS methods and Cloud services
by proposing an architecture for Cloud service management with components
for meta-negotiations and SLA mappings [9, 8, 7]. Meta-negotiations are de-

www.manaraa.com

Service Mediation and Negotiation Bootstrapping 121

fined by means of a meta-negotiation document where participating parties may
express: the pre-requisites to be satisfied for a negotiation, for example, require-
ment for a specific authentication method; the supported negotiation protocols
and document languages for the specification of SLAs; and conditions for the
establishment of an agreement, for example, a required third-party arbitrator.
SLA mappings are defined by XSLT1 documents where inconsistent parts of
one document are mapped to another document e.g., from consumer’s tem-
plate to provider’s template. Moreover, based on SLA mappings and deployed
taxonomies, we eliminate semantic inconsistencies between consumer’s and
providers SLA template.

2. Related Work

Since there is very little exiting work on self-adaptable Cloud services, we
look into existing systems in related areas - in particular into existing Grid
systems. Currently, a large body of work exists in the area of Grid service
negotiation and SLA-based QoS [20, 11]. Work presented in [22] discusses
incorporation of SLA-based resource brokering into existing Grid systems.
Glatard et al. discuss a probabilistic model of workflow execution time evaluated
in context of EGEE grid infrastructure [13]. Work described in [23] presents
an approach for dynamic workflow management and optimization using near-
realtime performance with strategies for choosing an optimal service, based
on user-specified criteria, from several semantically equivalent Web services.
Oldham et al. describe a framework for semantic matching of SLAs based on
WSDL-S and OWL [21].

Ardagana et al. [3] present an autonomic Grid architecture with mechanisms
to dynamically re-configure service center infrastructures, which is basically
exploited to fulfill varying QoS requirements. Work presented in [1] extends
the service abstraction in the Open Grid Services Architecture (OGSA) for
QoS properties focusing on the application layer. Thereby, a given service may
indicate the QoS properties it can offer or it may search for other services based
on specified QoS properties. Work presented in [11] proposes a generalized
resource management model where resource interactions are mapped onto
a well defined set of platform-independent SLAs. The model is based on
Service Negotiation and Acquisition Protocol (SNAP) providing the lifetime
management SLAs.

Dan et al. [12] present a framework for providing customers of Web services
differentiated levels of service through the use of automated management and
SLAs. Work described in [15] discusses how semantic technologies may be
used by mobile devices which need to locate and select appropriate Grid services

1XSL Transformations (XSLT) Version 1.0, http://www.w3.org/TR/xslt.html

www.manaraa.com

122 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

Autonomic Manager

Analysis Planning

Monitoring Execution

Knowledge

QoS Metrics
Protocol
Evaluation
...

QoS Metrics
Protocol
Evaluation
... Sensor Actuator

Service
Compositions
Mapping Strategies
...

Negotiation
using VieSLAF
framework
...

QoS
example

Figure 1. General Architecture of an Autonomic System Explained on a QoS Example

in an automatic and flexible way. Jurca et al. propose a new form of SLAs
where the price is determined by the QoS which is actually delivered by service
provider. For the monitoring of QoS a novel approach is introduced based on
reputation mechanism [17].

3. Adaptable, Versatile, and Dynamic services

In this section we discuss how adaptable, versatile, and dynamic services can
be realized.

3.1 Overview

To facilitate dynamic, versatile, and adaptive IT infrastructures, SOA systems
should react to environmental changes, software failures, and other events which
may influence the systems’ behavior. Therefore, adaptive systems exploiting
self-* properties (self-healing, self-controlling, self-managing, etc.) are needed,
where human intervention with the system is minimized. We propose models
and concepts for adaptive services building on the approach defined by means
of autonomic computing [18, 3].

We identified the following objectives:

Negotiation bootstrapping and service mediation. The first objective is to
facilitate communication between publicly available services. Usually,
before service usage, service consumer and service provider have to es-
tablish an electronic contract defining terms of use [6, 11]. Thus, they
have to negotiate the exact terms of contract (e.g., exact execution time
of the service). However, each service provides a unique negotiation pro-
tocol often expressed using different languages, representing an obstacle
within the SOA architecture. We propose novel concepts for automatic
bootstrapping between different protocols and contract formats increasing
the number of services a consumer may negotiate with. Consequently,
the full potential of public services could be exploited.

www.manaraa.com

Service Mediation and Negotiation Bootstrapping 123

Analysis

Planning

Monitoring

Execution

Knowledge

Execution of a Meta-negotiation

Evaluation of existing
bootstrapping strategies

Sensor

Actuator

Application of existing and
definition of new bootstrapping
strategies

Bootstrapping

Detections of SLA
inconsistencies

Evaluation of existing SLA
mappings

Application of existing and
definition of new SLA
mappings

Applicaiton of SLA mappings
to fulfill successful SLA
contracting

Negotiation Bootstrapping Service Mediation

Definition and publication of
Meta-negotiation documents

Prerequisites

Figure 2. Negotiation Bootstrapping and Service Mediation as Part of the Autonomic Process

Service Enforcement. Services may fail, established contracts between ser-
vices may be violated. The second objective is to develop methods for
service enforcement, where failures and malfunctions are repaired on
demand and where services are adapted to changing environmental and
system conditions. We propose development of knowledge bases where
the directives, policies, and rules for failure adjustment and repair may
be specified and stored. Furthermore, adequate methods for the condition
specification and condition evaluation are emerging research issues.

Service adaptivity. Service failures or violations of electronic agreements
must be detected in an efficient manner. Moreover, the reaction to failures
should be done in an adequate way. Thus, the third objective is the devel-
opment of novel methods for modeling of intelligent logging capabilities
at the level of a single service as well as composite services. Sophis-
ticated concepts for the measurement of service execution parameters
and Quality of Service (QoS) are needed as well as generic monitoring
capabilities which can be customized on-demand for different services.

Service Governance. Policies and rules for service enforcement should not
be defined in a static way. Moreover, the rules should evolve over time.
The fourth objective is the development of the governing guidelines for
rule definition and rule-evolution. This includes the development of
adequate languages for rule specification and rule evolution as well as
novel reasoning techniques.

In order to achieve aforementioned goals we utilize the principles of auto-
nomic computing. Autonomic computing research methodology can be exem-
plified using Quality of Service (QoS) as shown in Figure 1. The management
is done through the following steps: (i) Monitoring: QoS managed element
is monitored using adequate software sensors; (ii) Analysis: The monitored

www.manaraa.com

124 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

and measured metrics (e.g., execution time, reliability, availability, etc.) are
analyzed using knowledge base (condition definition, condition evaluation, etc.);
(iii) Planning: Based on the evaluated rules and the results of the analysis, the
planning component delivers necessary changes on the current setup e.g., rene-
gotiation of services which do not satisfy the established QoS guarantees; (iv)
Execution: Finally, the planned changes are executed using software actuators
and other tools (e.g., VieSLAF framework [9]), which query for new services.

3.2 Negotiation Bootstrapping and Service Mediation

Autonomic computing can be applied for other managed elements e.g., service
negotiation. In the following we explain the first steps in achieving aforemen-
tioned architecture: meta-negotiations and SLA mappings.

Figure 2 depicts how the principles of autonomic computing can be applied
to negotiation bootstrapping and service mediation. As a prerequisite of the
negotiation bootstrapping users have to specify a meta-negotiation document
describing the requirements of a negotiation, as for example required negotiation
protocols, required security infrastructure, provided document specification
languages, etc. During the monitoring phase all candidate services are selected
where negotiation bootstrapping is required. During the analysis phase existing
knowledge base is queried and potential bootstrapping strategies are found. In
case of missing bootstrapping strategies users can define in a semi-automatic
way new strategies (planning phase). Finally, during the execution phase the
negotiation is started by utilizing appropriate bootstrapping strategies.

The same procedure can be applied to service mediation. During the service
negotiation, inconsistencies in SLA templates may be discovered (monitoring
phase). During the analysis phase existing SLA mappings are analyzed. During
the planning phase new SLA mappings can be defined, if existing mappings
cannot be applied. Finally, during the execution phase the newly defined SLA
mappings can be applied.

As indicated with bold borders in Figure 2, in this chapter we present solu-
tions for the definition and accomplishment of meta-negotiations (Section 4)
and for the specification and applications of SLA mappings (Section 5). In the
following section we explain the principles of meta-negotiations.

4. Meta-Negotiations

In this section, we present an example scenario for the meta-negotiation
architecture, and describe the document structure for publishing negotiation
details into the meta-negotiation registry.

www.manaraa.com

Service Mediation and Negotiation Bootstrapping 125

4.1 Meta-Negotiation Scenario

The meta-negotiation infrastructure can be employed in the following manner:
(i) Publishing: A service provider publishes descriptions and conditions of sup-
ported negotiation protocols into the registry; (ii) Lookup: Service consumers
perform lookup on the registry database by submitting their own documents
describing the negotiations that they are looking for. (iii) Matching: The reg-
istry discovers service providers who support the negotiation processes that a
consumer is interested in and returns the documents published by the service
providers; (iv) Negotiation: Finally, after an appropriate service provider and
a negotiation protocol is selected by a consumer using his/her private selec-
tion strategy, negotiations between them may start according to the conditions
specified in the provider’s document.

In the following we explain the sample meta-negotiation document.

4.2 Meta-Negotiation Document (MND)

The participants publishing into the registry follow a common document
structure that makes it easy to discover matching documents. This document
structure is presented in Figure 3 and consists of the following main sections.

Each document is enclosed within the <meta-negotiation> ...
</meta-negotiation> tags. Each meta-negotiation (MN) comprises three
distinguishing parts, namely pre-requisites, negotiation and agreement as de-
scribed in the following paragraphs.
Pre-requisites. The conditions to be satisfied before a negotiation starts
are defined within the <pre-requisite> element (see Figure 3, lines 3–10).
Pre-requisites define the role a participating party takes in a negotiation, the
security credentials and the negotiation terms. The <security> element spec-
ifies the authentication and authorization mechanisms that the party wants
to apply before starting the negotiation process. The negotiation terms spec-
ify QoS attributes that a party is willing to negotiate and are specified in the
<negotiation-term> element. For example, in Figure 3, the negotiation
terms of the consumer are beginTime and endTime, and price (line 6).
Negotiation. Details about the negotiation process are defined within the
<negotiation> element. Each document language is specified within the
<document> element. In Figure 3, WSLA is specified as the supported document
language. Additional attributes specify the URI to the API or WSDL for
the documents and their versions supported by the consumer. In Figure 3,
AlternateOffers is specified as the supported negotiation protocol. In addition
to the name, version, and schema attributes, the URI to the WSDL or API of
the negotiation protocols is specified by the location attribute (line 12).
Agreement. Once the negotiation has concluded and if both parties agree to
the terms, then they have to sign an agreement. This agreement may be verified

www.manaraa.com

126 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

<meta-negotiation ...>
<pre-requisite>
<role name="consumer"/>
<security> <authentication value="GSI" location="uri"/> </security>
<negotiation-terms>
<negotiation-term name="beginTime"/> <negotiation-term name="endTime"/>
</negotiation-terms>
</pre-requisite>
<negotiation>
<document name="WSLA" value="uri" version="1.0"/>
<protocol name="alternateOffers" schema="uri" version="1.0" location="uri"/>
</negotiation>
<agreement> <confirmation name="arbitrationService" value="uri"/> </agreement>
</meta-negotiation>

Figure 3. Example Meta-negotiation Document

- Service 1

- Service 2

- Service 3

- ...

- Service n

Service Registry

- Service 1

- Service 2

- Service 3

- ...

- Service n

Template a:

- Service 1

- Service 2

- Service 3

- ...

- Service n

Service
Consumer

Service
Provider

3.
 <

<
se

ar
ch

 s
er

vi
ce

s>
>

4.
 <

<
as

si
gn

 m
ap

pi
ng

s>
>

1.
 <

<
as

si
gn

 s
er

vi
ce

s
to

 c
at

eg
or

y>
>

2.
 <

<
as

si
gn

 m
ap

pi
ng

s>
>

5. <<template adaptation>>

(a)

local
WSLA
template

Rule
from
local to
remote

XSL-
Transfor-
mations

+
remote
WSLA
Template

XSL-
Transfor-
mations

Rule
from
remote
to local

+

(b)

Figure 4. Management of SLA-Mappings (a) Scenario for XSL Transformations (b)

by a third party organization or may be logged with another institution who
will also arbitrate in case of a dispute. These modalities are specified within
the <agreement> clause of the meta-negotiation document as shown in line 14.
The meta-negotiation architecture described here was experimentally evaluated
and the results were presented in a previous publication [8].

5. SLA mappings

In the presented approach each SLA template has to be published into a
registry where negotiation partners i.e., provider and consumer, can find each
other.

5.1 Management of SLA mappings
Figure 4(a) depicts the architecture for the management of SLA mappings and

participating parties. The registry comprises different SLA templates whereby
each of them represent a specific application domain, e.g., SLA templates for
medical, telco or life science domain. Thus, each service provider may assign
his/her service to a particular template (see step 1 in Figure 4(a)) and afterwards
assign SLA mappings if necessary (see step 2). Each template a may have n
services assigned.

www.manaraa.com

Service Mediation and Negotiation Bootstrapping 127

Service consumer may search for the services using meta-data and search
terms (step 3). After finding appropriate services each service consumer may
define mappings to the appropriate template the selected service is assigned
to (step 4). Thereafter, the negotiation between service consumer and service
provider may start as described in the next section. As already mentioned tem-
plates are not defined in a static way. Based on the assigned SLA mappings and
the predefined rules for the adaptation, SLA templates are updated frequently
trying to reflect the actual SLAs used by service provides and consumers (step
5).

Currently, SLA mappings are defined on an XML level, where users define
XSL transformations. However, a UML based GUI for the management of SLA
mappings is subject of ongoing work [7].

5.2 Scenario for SLA mappings

Figure 4 depicts a scenario for defining XSL transformations. For the def-
inition of SLA agreements we use Web Service Level Agreement (WSLA)
[24]. WSLA templates are publicly available and published in a searchable
registry. Each participant may download previously published WSLA templates
and compare them with the local template. This can be done in an automatic
way by using appropriate tools. We are currently developing a GUI that can
help consumers to find suitable service categories. If there are any inconsisten-
cies discovered, service consumer may write rules (XSL transformation) from
his/her local template to the remote template. The rules can also be written
by using appropriate visualization tools. Thereafter, the rules are stored in the
database and can be applied during the runtime to the remote template. During
the negotiation process, the transformations are performed from the remote
WSLA template to the local template and vice versa.

Figure 4 depicts a service consumer generating a WSLA. The locally gener-
ated WSLA plus the rules defining transformation from local WSLA to remote
WSLA, deliver a WSLA which is compliant to the remote WSLA. In the second
case, the remote template has to be translated into the local one. In that case,
the remote template plus the rules defining transformations from the remote to
local WSLA deliver a WSLA which is compliant to the local WSLA. Thus, in
this manner, the negotiation may be done using non-matching templates.

Even the service provider can define rules for XSL transformations from
the publicly published WSLA templates to the local WSLA templates. Thus,
both parties, provider and consumer, may match on a publicly available WSLA
template.

www.manaraa.com

128 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

...
<xsl:template ...>
<xsl:element name="Function" ...>
<xsl:attribute name="type"> <xsl:text>Times</xsl:text> </xsl:attribute>
<xsl:attribute name="resultType"> <xsl:text>double</xsl:text> </xsl:attribute>
<xsl:element name="Operand" ...>
<xsl:copy> <xsl:copy-of select="@*|node()"/> </xsl:copy>
</xsl:element>
<xsl:element name="Operand" ...>
<xsl:element name="FloatScalar" ...> <xsl:text>1.27559</xsl:text> </xsl:element>
</xsl:element>
</xsl:element>
</xsl:template>
...

Figure 5. Example XSL Transformation

5.3 SLA mappings Document (SMD)

In this section, we present and discuss a sample SLA mapping document.
Generally, SLA mappings can be defined using XSLT and XPath expressions.

Figure 5 shows a sample rule for XSL transformations where price defined
in Euro is transformed to an equivalent price in US Dollars. Please note that for
the case of simplicity we use a relatively simple example. Using XSLT even
more complicated mappings can be defined, the explanation of which is out of
the scope of this chapter.

As shown in Figure 5, the Euro metrics is mapped to the Dollar metric. In
this example we define the mapping rule returning Dollars by using the Times
function of WSLA Specification (see line 4). The Times function multiplies
two operands: the first operand is the Dollar amount as selected in line 7, the
second operand is the Dollar/Euro quote (1.27559) as specified in line 10. The
dollar/euro quote can be retrieved by a Web service and is usually not hard
coded.

With similar mapping rules users can map simple syntax values (values of
some attributes etc.), but they can even define complex semantic mappings with
considerable logic behind. Thus, even slightly different SLA templates can be
translated into each other.

6. VieSLAF framework

In this section we present the architecture used for the semi-automatic man-
agement of meta-negotiations and SLA mappings. We discuss a sample archi-
tectural case study exemplifying the usage of Vienna Service Level Agreement
Framework - VieSLAF.

As discussed in Section 3 VieSLAF framework represents the first prototype
for the management of self-governing ICT Infrastructures. The VieSLAF frame-
work enables application developers to efficiently develop adaptable service-
oriented applications simplifying the handling with numerous Web service

www.manaraa.com

Service Mediation and Negotiation Bootstrapping 129

Adaptation
rules for SLA

templates

Remote

SLA

template

Meta Negotiaiton
Middleware (MNM)
Meta Negotiaiton

Middleware (MNM)
Meta Negotiaiton

Middleware (MNM)
 MN and SLA MiddlewareMN and SLA Mapping

Middleware

Sample Service
provider specific

middleware

Client,
consumer specific

middleware

WSDL

(2)

API...
...

Remote

SLA

template

Data Model

Local SLA

template

Local SLA

template

Remote

SLA

template

(4)

Trans-

formation

rules:

XSLT,

XPath

Trans-

formation

rules:

XSLT,

XPath

Trans-

formation

Rules:

XSLT,

XPath

Trans-

formation

Rules:

XSLT,

XPath

Sevice 1
Thread1_param1
Thread2_param2

Threadn_paramn
...

Sevice 2

Thread1_param1
Thread2_param2

Threadn_paramn
...

(8)

(1)

Cloud of measurement services

meta

negotiation

document

meta

negotiation

document

Meta

negotiation

document

(1)

Knowledge Base

Adaptation

Monitoring

Sample Consumer

Sample Provider

Registry

DB

DB

(3)

(6)

(9)

(5)

(7)

Figure 6. Extended VieSLAF Architecture with Monitoring and Taxonomies

specifications. The framework facilitates management of QoS models as for
example management of meta-
negotiations [8] and SLA mappings [9]. Based on VieSLAF framework, a ser-
vice provider may easily manage QoS models and SLA templates and frequently
check whether selected services satisfy developer’s needs e.g., specified QoS-
parameters in SLAs. Furthermore, we discuss basic ideas about the adaptation
of SLA templates.

We describe the VieSLAF components based on Figure 6. As shown in step (1)
in Figure 6 users may access the registry using a GUI, browse through existing
templates and meta-negotiation documents using the MN and SLA mapping
middleware. In the next step (2), service provider specify MN documents and
SLA mappings using the MN and SLA mapping middleware and submit it
to the registry. Thereafter, in step (3), service consumer may query existing
meta-negotiation documents, define own SLA mappings to remote templates
and submit it to the registry. MN and SLA mapping middleware on both sides
(provider’s and consumer’s) facilitates management of MNs and SLA mappings.
Submitted MN documents and SLA mappings are parsed and mapped to a
predefined data model (step 4). After meta-negotiation and preselection of
services, service negotiation may start using the negotiation protocols, document
languages, and security standards as specified in the MN document (step 5).
During the negotiation SLA mappings and XSLT transformations are applied
(step 6). After the negotiation, invocation of the service methods may start (step

www.manaraa.com

130 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

7). SLA parameters are monitored using the monitoring service (step 8). Based
on the submitted SLA mapping publicly available SLA templates are adapted
reflecting the majority of local SLA templates (step 9).

7. Conclusion and Future Work

In this chapter we have presented the goals of the Foundations of Self-
Governing ICT Infrastructures (FoSII) project and how these goals can be
achieved using the principles of autonomic computing. We discussed novel
meta-negotiation and SLA mapping solutions for Cloud services bridging the
gap between current QoS models and Cloud middleware and representing
important prerequisites for the establishment of autonomic Cloud services. We
discussed the approaches for meta-negotiation and SLA mapping representing
partial implementation of negotiation bootstrapping and service mediation
approaches. Furthermore, we presented the VieSLAF framework used for the
management of meta-negotiations and SLA mappings. Using VieSLAF service
users can even monitor SLA parameters during the execution of the service
calls. Finally, we discussed how SLA templates can be adapted based on the
submitted SLA mappings.

As the next step of the FoSII project we plan to implement bootstrapping
strategies where even consumer and provider, which understand different nego-
tiation protocols and document languages can communicate with each other.

Acknowledgments

The work described in this chapter was partially supported by the Vienna
Science and Technology Fund (WWTF) under grant agreement ICT08-018
Foundations of Self-governing ICT Infrastructures (FoSII).

References

[1] R.J. Al-Ali, O.F. Rana, D.W. Walker, S. Jha, and S. Sohail. G-qosm: Grid service discovery
using qos properties. Computing and Informatics, 21:363–382, 2002.

[2] Amazon Simple Storage Services (S3), http://aws.amazon.com/s3/
[3] D. Ardagna, G. Giunta, N. Ingraffia, R. Mirandola, and B. Pernici. QoS-Driven Web

Services Selection in Autonomic Grid Environments. Grid Computing, High Performance
and Distributed Applications (GADA) 2006 International Conference, Montpellier, France,
Oct 29 - Nov 3, 2006.

[4] A. P. Barros and M. Dumas. The Rise of Web Service Ecosystems. IT Professional
8(5):31–37, Sept./Oct., 2006.

[5] J. Blythe, E. Deelman, and Y. Gil. Automatically Composed Workflows for Grid Environ-
ments. IEEE Intelligent Systems 19(4):16–23, 2004.

[6] I. Brandic, S. Pllana, and S. Benkner. Specification, Planning, and Execution of QoS-
aware Grid Workflows within the Amadeus Environment. Concurrency and Computation:
Practice and Experience, 20(4):331–345, John Wiley & Sons, Inc., New Jersey, March
2008.

www.manaraa.com

Service Mediation and Negotiation Bootstrapping 131

[7] I. Brandic, D. Music, S. Dustdar, S. Venugopal, and R. Buyya. Advanced QoS Methods
for Grid Workflows Based on Meta-Negotiations and SLA-Mappings. The 3rd Workshop
on Workflows in Support of Large-Scale Science. In conjunction with Supercomputing
2008, Austin, TX, USA, November 17, 2008.

[8] I. Brandic, S. Venugopal, Michael Mattess, and Rajkumar Buyya, Towards a Meta-
Negotiation Architecture for SLA-Aware Grid Services. Technical Report, GRIDS-TR-
2008-9, Grid Computing and Distributed Systems Laboratory, The University of Mel-
bourne, Australia, Aug. 8, 2008.

[9] I. Brandic, D. Music, P. Leitner, and S. Dustdar. VieSLAF Framework: Increasing the
Versatility of Grid QoS Models by Applying Semi-automatic SLA-Mappings. Vienna
University of Technology, Technical Report, TUV-184-2009-02.pdf, 2008.

[10] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and Ivona Brandic. Cloud Computing
and Emerging IT Platforms: Vision, Hype, and Reality for Delivering Computing as the
5th Utility. Future Generation Computer Systems, ISSN: 0167-739X, Elsevier Science,
Amsterdam, The Netherlands, 2009, in press, accepted on Dec. 3, 2008.

[11] K. Czajkowski, I. Foster, C. Kesselman, V. Sander and S. Tuecke. SNAP: A Protocol
for Negotiating Service Level Agreements and Coordinating Resource Management in
Distributed Systems. 8th Workshop on Job Scheduling Strategies for Parallel Processing,
Edinburgh Scotland, July 2002.

[12] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H. Ludwig, M. Polan, M.
Spreitzer, and A. Youssef. Web services on demand: WSLA-driven automated manage-
ment. IBM Systems Journal, 43(1), 2004.

[13] T. Glatard, J. Montagnat, and X. Pennec. A Probabilistic Model to Analyse Workflow Per-
formance on Production Grids. 8th IEEE International Symposium on Cluster Computing
and the Grid (CCGrid 2008), Lyon, France, pages 510-517, 19-22 May 2008.

[14] Google App Engine, http://code.google.com/appengine
[15] T. Guan, E. Zaluska, and D. De Roure. A Semantic Service Matching Middleware for

Mobile Devices Discovering Grid Services. Advances in Grid and Pervasive Computing,
Third International Conference, GPC 2008, Kunming, China, pages 422-433, May 25-28,
2008.

[16] Foundations of Self-Governing ICT Infrastructures (FoSII) Project,
http://www.wwtf.at/projects/research projects/
details/index.php?PKEY=972 DE O

[17] R. Jurca and B. Faltings. Reputation-based Service Level Agreements for Web Services. In
Proceedings of 3rd International Conference on Service Oriented Computing, Amsterdam,
The Netherlands, pages 396-409, December 12-15, 2005.

[18] J.O. Kephart and D.M. Chess, The vision of autonomic computing. Computer, 36(1):41–50,
Jan 2003.

[19] M.P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-Oriented Computing:
State of the Art and Research Challenges, IEEE Computer, 40(11): 64–71, November
2007

[20] A. Paschke, J. Dietrich, and K. Kuhla. A Logic Based SLA Management Framework.
Semantic Web and Policy Workshop (SWPW), 4th Semantic Web Conference (ISWC
2005), Galway, Ireland, 2005.

[21] N. Oldham, K. Verma, A. P. Sheth, and F. Hakimpour. Semantic WS-agreement partner
selection. Proceedings of the 15th international conference on World Wide Web, WWW
2006, Edinburgh, Scotland, UK, May 23-26, 2006.

[22] D. Ouelhadj, J. Garibaldi, J. MacLaren, R. Sakellariou, and K. Krishnakumar. A multi-
agent infrastructure and a service level agreement negotiation protocol for robust schedul-
ing in grid computing. In Proceedings of the 2005 European Grid Computing Conference
(EGC 2005), Amsterdam, The Netherlands, February, 2005.

www.manaraa.com

132 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

[23] D. W. Walker, L. Huang, O. F. Rana, and Y. Huang. Dynamic service selection in workflows
using performance data. Scientific Programming 15(4):235–247, 2007.

[24] Web Service Level Agreement (WSLA),
http://www.research.ibm.com/wsla/WSLASpecV1-20030128.pdf

www.manaraa.com

SLA NEGOTIATION FOR VO FORMATION

Shamimabi Paurobally
School of Electronics and Computer Science
University of Westminster, London W1W 6UW, U.K
S.Paurobally@westminster.ac.uk

Abstract Resource management systems are changing from localized resources and ser-
vices towards virtual organizations (VOs) sharing millions of heterogeneous
resources across multiple organizations and domains. The virtual organizations
and usage models include a variety of owners and consumers with different usage,
access policies, cost models, varying loads, requirements and availability. The
stakeholders have private utility functions that must be satisfied and possibly
maximized.

This paper proposes automated negotiation techniques between web services
for the formation of virtual organizations. More specifically, a multi-issue sealed
bid auction is implemented between a VO manager and potential VO members
on the resources they provide or on their payment for requested resources. We
evaluate our approach to show that negotiation allows to form a more efficient
VO.

Keywords: Negotiation, SLA, Virtual Organisation, Agreement

P. Wieder et al. (eds.), Grids and Service-Oriented Architectures for Service Level Agreements,
DOI 10.1007/978-1-4419-7320-7_12, © Springer Science+Business Media, LLC 2010

www.manaraa.com

134 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

1. Introduction

Virtual Organizations (VOs) enable disparate groups of organizations and/or
individuals to share resources in a controlled fashion, so that members may
collaborate to achieve a shared goal [5]. Virtual organization formation occurs
when a collection of grid entities, each with various problem solving capabil-
ities and resources, agree to pool their resources together and act as a single
conceptual unit seamlessly integrating their resources and services to offer the
VO services. One of the challenges of Grid systems is the on demand formation
of virtual organizations in open environments requiring dynamic collaborations
for resource provisioning. This requires the timely orchestration and assembling
of applications and services based on the resilient availability of resources in a
VO. Given the dynamic nature of resources availability, predicting the resource
needs and availability can be complex, and involves sensing and responding to
fluctuating market trends in real time. Service providers intending to form a
VO must determine the optimal set of providers to form a VO partnership with
and monitor the performance of the VO during its lifetime. Existing work for
managing VOs and their QoS [8][7] mainly adopt a provider-centric perspective
for guaranteeing QoS for service delivery.

Given the dynamic nature of VOs and the need to incorporate service
providers and consumers with diverse preferences but retaining some com-
monality in goals and interests, negotiation and service level agreements (SLAs)
can facilitate the formation, operation and dissolution of a VO or when an
outsider requests to be a new member of an existing VO. In this paper, we
focus on the formation of a VO consisting of service providers through an
automated negotiation between them and a VO manager. The goal is to select
the set of providers that will provide the best service and resources given a set of
requirements. More specifically, we implement a sealed bid auction between the
VO manager and prospective VO members, and we implement three decision
making strategies for the service provider and VO manager to evaluate and
generate SLAs. We demonstrate the performance of such an auction compared
to having no negotiation by analyzing the utility of the SLAs and the time taken
to form a VO.

The remainder of the paper is structured in the following way. Section 2
presents the characteristics and requirements of VOs. Section 3 describes the
sealed bid auction protocol and the process of VO formation through such an
auction. Section 4 provides the strategies used by service providers on deciding
how many resources to offer for joining a VO, and the strategies of a VO
manager on deciding whether to accept a service provider in the VO. Section
5 analyses the performance of the sealed bid auction with respect to various
strategies. Section 5 concludes.

www.manaraa.com

SLA Negotiation for VO Formation 135

2. VO Characteristics

Virtual organizations are dynamic collections of individuals, institutions and
resources for flexible, secure, coordinated resource sharing. The members of
a VO usually consist of service providers, but a more diverse structure would
also incorporate service consumers and third party servers such as for example
security and authorization.

VOMS Virtual organization management (VOMs) [3], [4] services provide
information on a member’s state within a virtual organization in terms of his
groups, roles and capabilities. DataGrid’s VOMs service [4] is an account
database storing VOMs credential and includes a VO manager to administrate
the VO memberships. A VO Manager enrolls users and resources into the
VO, allocates users to the resources and inspects the resource usage in the
VO. More specifically, the VO Manager maintains a VO directory with the list
of services in his VO, adds or removes groups within the VO and specifies
the administrator(s) for each group within the VO. In [3], users log in to a
VOM portal to get access to a restricted set of functionalities based on the role
assigned to them by the VO administrator.

Membership Policies. There are several details regarding the membership
policies, the foremost being enforcing access control policies to provided re-
sources. Two different members do not necessary have the same access rights to
a resource. Access rights depend on the specific resource itself, the role of the
member, and possibly the recent activities of the member in the VO. VOMS also
manages authorization data through a database of user roles and capabilities
and a set of tools for accessing and manipulating the database, assigning roles
to users and generating user credentials. A user may create an aggregate proxy
certificate to access multiple VOs, which enables access to resources in any of
the VOs.

Membership Expiration Time. A user membership in a VO is set for a
specific duration and the authorization information and certificate are valid for a
limited period of time. VO members can apply to renew their membership and
certificates at the expiry time of the membership. The success of this renewal is
subject to the contribution of the VO member in the VO.

Avoid over-provisioning. Investing in resources has to be leveraged with
operational requirements to optimize resource utilization and costs. Membership
in a VO has to consider the risk of over-provisioning and incurring excess costs.

Lifecycle of VO. A VO may be of limited duration which is either short
on-demand VOs or long-lived VOs with established SLAs. A short-term VO
is formed to answer a temporary need for resources and is disbanded once
this need is satisfied. The policy for the formation of a VO is established
dynamically.

www.manaraa.com

136 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

Pathan et al. [6] propose a virtual organization model to support peering of
content delivery networks (CDN). CDNs collaborate through the formation of
a VO which is initiated by a CDN to meet its SLAs with its customers. Their
approach is centered around the service providers and negotiation is performed
through a mediator which is analogous to the VO manager in this paper. They
focus more on the policy management of the VO and the mediator, abstracting
away from a detailed description of auction protocol and strategies used.

Akram [2] outlines the requirements for VOs and the role of different avail-
able technologies to provide the middleware for VO formation. The paper
evaluates the web services related specifications, in particular the web services
resource framework, and their use in VOs. The requirements listed are infor-
mative and automated negotiation techniques can help to facilitate them for
example diversity and sharing of resources between different communities.

3. Sealed Bid Auction for VO Formation

Figure 1 shows the actors involved in a VO formation – the VO, the VO
manager and the service providers outside the VO. The VO manager has a sealed
bid service that will carry out a sealed bid auction with the service providers
outside of the VO. The service providers advertise their resources in a directory
service, and have also advertised that they provide their sealed bid service to
participate in a sealed bid auction. The VO manager knows the requirements of
the VO and acts on behalf of the VO to recruit new service providers according
to the VO requirements. The VO manager selects suitable service providers
through the directory service and conducts a sealed bid auction with them
through its sealed bid service. This allows the VO manager to choose those
providers which best fit the VO requirements. Thus VO formation is achieved
by the VO manager adding selected service providers as members of the VO.

3.1 Sealed Bid Auction Service

Figure 2 illustrates the sealed bid auction protocol implementing the VO
formation. Let SP denote the set of service providers that the VO manager m
selects from the directory service. The auction is started by the VO manager’s
sealed bid service issuing a broadcast to all providers in SP . The content of
the broadcast is a measure of the resources that the VO manager expects to be
provided, for example 10 GB per hour. A service provider’s sealed bid service
in SP checks the provider’s available resources and decides if it can make a
bid to satisfy m’s broadcast. If the service provider can make a bid, then the
provider’s sealed bid service generates its bid and send this privately to m. This
is different from English auctions such as eBay since bidders are not privy to
each other’s bids. The VO manager m receives all bids privately, evaluates them
and chooses which bids to accept. Here m may choose to accept more than one

www.manaraa.com

SLA Negotiation for VO Formation 137

Figure 1. Actors in Virtual Organisation Formation

bid and to reject the rest. We explain our decision making algorithms in section
4.

For the VO manager and the providers to perform a sealed bid auction, they
expose their sealed bid service. Figure 2 shows a sealed bid auction. A VO
manager’s sealed bid service exposes the method private bid for service
providers to invoke this method and submit their bids. In the case of a service
provider’s auction service, its exposed methods are broadcast for the VO
manager to invoke as a call for bids, accept and reject for the VO manager
to respectively accept or reject the provider’s bid.

Figures 3 and 4 respectively give an overview of the port-type of the sealed
bid auction service for the VO manager and a service provider. In addition the
VO manager exposes the do auction to initialize the VO manager’s sealed bid
auction service.

3.2 Service Level Agreement (SLA)

The nature of agreements is dependent on the type of resource being pro-
vided. An SLA is a list of agreement terms and we define a structure called
Service Level Agreement in WSDL to describe the resources being negoti-

www.manaraa.com

138 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

Figure 2. Sealed Bid Auction between VO Manager and Service Providers

<!-- SEALED BID AUCTION PORT-TYPE FOR THE VO MANAGER -->

<wsdl:portType name="Sealed_Bid_Manager">

<wsdl:operation name="do_auction"

parameterOrder="Context_Job provider_list">

</wsdl:operation>

<wsdl:operation name="private_bid" parameterOrder="Bid">

<wsdl:input message="impl:BidIn" name="BidIn"/>

<wsdl:output message="impl:BidOut" name="BidOut"/>

</wsdl:operation>

</wsdl:portType>

Figure 3. Sealed Bid Auction PortType for the VO manager

ated upon. The parameters of a broadcast, private bid, accept and reject method
invocations are passed as Service Level Agreement types.

A Service Level Agreement is essentially a list of issues characterizing
the resource or task in terms of an SLA. The SLA structure is simpler that a
WS-Agreement structure [1]. Each term in an SLA includes a name, a value
and a flag indicating whether it is a qualitative or a quantitative term. For exam-
ple, a service description term may include (Provider SHA, Auction 227,

www.manaraa.com

SLA Negotiation for VO Formation 139

<!-- SEALED BID AUCTION PORT-TYPE FOR A SERVICE PROVIDER -->

<wsdl:portType name="Sealed_Bid_Provider">

<wsdl:operation name="broadcast" parameterOrder="call_for_bids">

<wsdl:input message="impl:call_for_bidsIn" name="call_for_bidsIn"/>

<wsdl:output message="impl:call_for_bidsOut" name="call_for_bidsOut"/>

</wsdl:operation>

<wsdl:operation name="accept" parameterOrder="SLA">

<wsdl:input message="impl:SLAIn" name="SLAIn"/>

<wsdl:output message="impl:SLAOut" name="SLAOut"/>

</wsdl:operation>

<wsdl:operation name="reject" parameterOrder="Rejection">

<wsdl:input message="impl:RejectionIn" name="RejectionIn"/>

<wsdl:output message="impl:RejectionOut" name="RejectionOut"/>

</wsdl:operation>

</wsdl:portType>

Figure 4. Sealed Bid Auction PortType for a service provider

{(price,50, IsQuantitative),

(StorageCapacity, 1GB, IsQuantitative),

(location, London, NonQuantitative)}). In such a bid, the SLA terms
are price, StorageCapacity and location, and the associated values indicate that
particular bid.

4. Decision Making Strategies

In this section, we describe our decision making algorithms for the evaluation
and the generation of the SLA and SLA templates. The VO manager generates
an SLA template for the broadcast invocation and evaluates the SLA offers
sent by service providers in their private bids to choose which bid to accept. A
service provider evaluates the broadcast from the VO manager and generates an
SLA to send as a private bid. An accepted bid by the VO manager is considered
as an SLA between the VO manager and that bidding service provider. In all
of these cases, the functions are calculated according to the requirements and
preferences of the VO manager and the service provider as applicable. Thus, in
making a bid, a service provider considers its available resources and how long
it should reserve these resources for the VO.

4.1 A Provider’s SLA Evaluation and Generation

A service provider has three decision making strategies – 1) cost and profit
strategy, 2) truth-telling strategy and 3) decrement strategy. In the truth-telling
strategy, a service provider reveals its requirements and preferences. The VO

www.manaraa.com

140 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

manager may also have a truth-telling strategy when sending a broadcast SLA
with its preferred value for each agreement terms. A service provider’s bid
is grounded with the provider’s own preferred value for each issue. If the
broadcast SLA lies outside the reserve values (maximum and minimum values
for an issue or term) for the service provider, then the latter’s bid is instantiated
with its reserve values.

In the cost and profit strategy, on receiving a broadcast, a service provider
evaluates whether it is worthwhile to submit a bid according to the profits it may
achieve. The cost and profit strategy is dependent on the resources available
for that service provider in the system for each service i. Assume at time t, a
provider p has resources αt

i already reserved, and that it has a total resources
capability of rtotal. The auction starts with the broadcast SLA α(VO R) from
the VO manager. Let κti(α) denote the resources that service provider p has
to commit to the new VO at time t and VO R denote the resource specification.
The added cost of providing resources κti(α) at time t for provider p is denoted
by ACi(α(VO R) | αt

i):

ACi(α(VO R) | αt
i) = rtotal(α(VO R) ∪ αt

i)− rtotal(α
t
i)

The added effort for provider p of making a bid and providing resources is
the difference between 1) its current resource allocation added to provisioning a
new VO according to the broadcast SLA and 2) the cost of only its current re-
source allocation. If ACi(α(VO R) | αt

i) < threshold profit(VO R), then the
provider can make a bid; otherwise, it will not bid. threshold profit(VO R) is
the provider’s perceived reward for provisioning the new VO. A service provider
looking for a reward will bid if equation 1 is satisfied, where current profit is
the profit it currently achieves from its current resource allocation.

ACi(α(VO R)) < (threshold profit(VO R) + current profit) (1)

In the Decrement strategy, the service provider and the VO manager have an
evaluation and generation margin. The service provider evaluates a broadcast
SLA and generates a bid against these pre-defined margins above or below the
reserve values, depending if it prefers a low or high value for that resource. This
is to give the stakeholders a chance to converge, independent of the time left, to
an agreement instead of rejecting the broadcast SLA rightaway.

4.2 A VO Manager’s Evaluation of a Bid

The VO manager chooses the bids that it will accept by considering both
the requirements of the VO and computing those bids with the highest utility
that falls within the VO manager’s requirements. For example, there are only

www.manaraa.com

SLA Negotiation for VO Formation 141

four new memberships available for that VO. Thus if there are 10 bids, then
the VO manager chooses the four best bids out of these ten bids, which may
depend on the other agreement terms in addition to the extra storage offered.
The evaluation function for choosing the best bids depends on the utility for the
manager of each term in the received bids along with their offered values. More
specifically, equation 2 defines the overall utility of a bid for the VO manager
m as Um

bid – this is the normalized weighted summation of the utility of the
individual agreement terms V i

j for that bid.

Um
bid =

∑

1≤j≤n

ωi
jV

i
j (bid[j]) (2)

5. Evaluation of the Auction for VO Formation

We deployed the sealed bid service over Globus Toolkit and evaluated the
sealed bid service for VO formation. The terms of the SLA regarding the
resources offered by a service provider include the identifier of the provider,
the auction identifier, the size of the submitted job, the processing rate and the
response time. We measure the utility gained by a provider to form part of a
VO through the sealed bid auction against time taken to reach the agreement.

From the VO’s perspective we measure the time taken to recruit five members
in the VO with respect to the utility of the agreed SLA. We vary the strategies to
compare between them. We compare the performance of the sealed bid service
with the case of no negotiations. No negotiations mean that the VO manager
broadcasts the SLA and the service provider either replies that it accepts to
provision the broadcast or not. Thus no negotiation implies no bids from the
service providers.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120

U
t
i
l
i
t
y

o
f

S
L
A
s

time/s

Utility of SLAs for Provider v/s time

No Negotiation
Truth strategy

Decrement strategy
Cost and Profit strategy

Figure 5. Utility gained for Provider
against time to reach SLA

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6 7

T
i
m
e

t
a
k
e
n

(
s
e
c
o
n
d
s
)

Member Number

Time taken to be accepted in VO v/s Member Number

No Negotiation
Truth strategy

Decrement strategy
Cost and Profit strategy

Figure 6. Time to form VO against Mem-
ber numbers

www.manaraa.com

142 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80 100 120

U
t
i
l
i
t
y

o
f

S
L
A
s

time/s

Utility of SLAs for manager v/s time

No Negotiation
Truth strategy

Decrement strategy
Cost and Profit strategy

Figure 7. Utility gained for Manager against time to reach SLA

Figure 5 shows the average utility obtained by the providers for the exchanged
SLAs against time. The service provider obtains the least utility when there is
no negotiation because it has to accept the VO manager’s broadcast SLA if the
provider wants to be part of the VO. The truth telling strategy performs better
for the service provider at first because it obtains a better SLA from the VO
manager than when the latter is using a Decrement strategy. However a better
final SLA is obtained using the decrement strategy because the bid made by the
service provider is better than when using the truth telling strategy. Finally the
cost endowment strategy performs the best for the service provider because it
takes into account the available resources of the provider.

Figure 6 shows the time to agree on an SLA and form a VO from the service
provider’s perspective. The time for VO formation is plotted with respect
to the number of members joining in the VO. In this case, not having any
negotiation saves the most time and if any agreement is possible from the
broadcast message, then the SLA is reached straightaway. However without
negotiation, less providers agree to join the VO, and more providers reject the
manager’s broadcast. Moreover, the more complex the decision strategy, the
more time is taken to agree on an SLA and form a VO. However, the truth
telling strategy being the least complex strategy with negotiation takes less time,
but only a few providers agree to join the VO. Thus, using the cost and profit
strategy, all the service providers manage to reach an agreement and form an
SLA, leading to a VO with the most members with this strategy.

Figure 7 shows the average utility obtained by the VO manager for the
exchanged SLAs against time. Since the "no negotiation" case is designed in
favor of the VO manager where a service provider can only accept or reject
the VO manager’s broadcast SLA, the VO manager achieves high utility in
the early stages when there is no negotiation. However, the manager would

www.manaraa.com

SLA Negotiation for VO Formation 143

achieve a low utility if it had to accept a service provider’s broadcast message if
the protocol was reversed. As time elapses, the decrement and cost and profit
strategies performs better than no negotiation because there are more service
providers joining in the VO when there is a sealed bid auction. Furthermore,
the VO manager can compare and choose the best providers as opposed when
not negotiating. In the end, the truth-telling strategy achieves the same utility as
when no negotiation. Thus the VO manager is not worse off by carrying out a
sealed bid auction, and in the long run achieves more utility with negotiation.

6. Conclusions

On demand resilient VO formation and operation in a dynamic, open and
competitive environment is a key challenge of Grid systems. Many areas have
started working on Grid computing business applications, for example, financial
services for running complex financial models and online games with highly
parallel multi-player online games. In this paper, we propose a negotiation
protocol, namely a sealed bid auction protocol for the dynamic formation of
virtual organizations between a VO manager and prospective service providers.
We implemented three decision strategies and evaluation of our auctioning
protocol shows the benefit of negotiation over not having any negotiation.
Through negotiation, the utility of the obtained SLAs is higher and the number
of service providers accepting to join the VO increases. Furthermore, the VO
manager can choose the most suitable providers by comparing bids. Future
work involves investigating the operation and dynamic re-formation of VOs, and
the heterogeneous negotiation between both service providers and consumers
to join a VO.

References

[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano,
S. Tuecke, and M. Xu. March 2007. Web Services Agreement Specification (WS-
Agreement). http://forge.gridforum.org/sf/projects/graap-wg.

[2] A. Akram. WSRF based virtual Organisation Middleware. In Proceedings of 18th Annual
IRMA International Conference, Vancouver, British Columbia, Canada, May 2007.

[3] S. Asif, K. Marko, S. Newhouse, and J. Darlington. ICENI Virtual Organisation Man-
agement. In UK e-Science All Hands Meeting, Nottingham, UK, September 2003, pages
117–120, September 2003.

[4] DataGrid. Virtual organization membership service. http://edg-wp2.web.cern.ch/edg-
wp2/security/voms/voms.html.

[5] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable virtual
organisations. International Journal of Supercomputer Applications, 15(3):200–222, 2001.

[6] A. Pathan, J. Broberg, K. Bubendorfer, K. Kim, and R. Buyya. An Architecture for Virtual
Organisation (VO)-Based Effective Peering of Content Delivery Networks. In Proceedings
of UPGRADE-CN 2007, June 2007.

www.manaraa.com

144 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

[7] G. Shercliff, P. Stockreisser, J. Shao, W. Gray, and N. Fiddian. Supporting QoS Assessment
and Monitoring in Virtual Organisations. In Proceedings of IEEE International Conference
on Services Computing. IEEE Computer Society, 2005.

[8] Jun Wen and Xianliang Lu. The design of QOS guarantee network subsystem. SIGOPS
Operating Systems Review, 36(1):81–87, 2002.

www.manaraa.com

FROM SERVICE MARKETS TO SERVICE

ECONOMIES – AN INFRASTRUCTURE FOR

PROTOCOL-GENERIC SLA NEGOTIATIONS

Sebastian Hudert
Department of Information Systems Management,
University of Bayreuth, Universitaetsstr. 30, 95447 Bayreuth,
Germany
sebastian.hudert@uni-bayreuth.de

Abstract Visions of 21st century’s information systems show highly specialized digital
services and resources, interacting continuously and with a global reach. For
a broad adoption of this vision in a commercial context it is crucial to have a
mechanism in place to guarantee quality of service and to decentrally coordinate
the involved resources. Current service infrastructures try to tackle these problems
by applying socioeconomic mechanisms such as electronic negotiations and
service level agreements. Such technologies allow for the implementation of
electronic service markets in analogy to real-world markets for everyday goods.
However, economic theory claims that different market situations and negotiated
products (i.e. SLAs) demand different negotiation protocols in order to reach
the highest-possible overall efficiency of the system. Thus we argue that next
generation service infrastructures will be based on a global service economy
where several different service markets and thus protocols are present at any given
point in time. In this paper we present a novel approach for such an infrastructure,
based on structured protocol descriptions and software-agent technology.

Keywords: service level agreement negotiation, quality of service, service economy, negotia-
tion protocol, software agents,

P. Wieder et al. (eds.), Grids and Service-Oriented Architectures for Service Level Agreements,
DOI 10.1007/978-1-4419-7320-7_13, © Springer Science+Business Media, LLC 2010

www.manaraa.com

146 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

1. Introduction

Visions of 21st century’s information systems show highly specialized digital
services and resources, which interact continuously and with a global reach.
Today’s Internet of mainly human interaction evolves towards a socio-technical
and global information infrastructure, where humans as well as software agents
acting on their behalf continuously interact to exchange data and computational
resources. Such infrastructures will possibly consist of millions of service
providers (SP), consumers (SC) and a multitude of possible intermediaries
like brokers, workflow orchestrators and others, thus forming an economic
environment. Electronic services and resources traded on a global scope will
eventually realize the vision of an open and global service economy, sometimes
also called the Internet of Services (IoS) [15].

For a broad adoption of this vision in a commercial context it is important to
have a mechanism in place to guarantee quality of service (QoS) for each service
invocation, even across enterprise boundaries. This becomes crucial when parts
of mission critical workflows will be executed on external services. A very
simple use case would be an engineering company purchasing basic storage
and computation services from the Amazon Web Services (AWS) 1 as well
as specific fluid simulation services from a specialized application SP. Since
such scenarios inherently lack the applicability of centralized QoS management,
guarantees must be obtained in the form of bi- or even multi-lateral service
level agreements (SLAs) assuring service quality across individual sites [12].
SCs can thus benefit from SLAs because they make nonfunctional properties of
services predictable and subsequently the corresponding services dependable
as needed in a business context. In order to support a comprehensive SLA-
based management for such settings, the main phases of the SLA life cycle
should be directly supported by the underlying infrastructure: service discovery,
negotiation, SLA creation, service binding, execution and post processing (such
as rating the service or payment). Following the rationale of economic theory
we propose an infrastructure for supporting the discovery and flexible, thus
protocol-generic, negotiation of SLAs as a first step towards distributed systems
incorporating the above mentioned ideas.

In doing so we will first derive a detailed scenario model for the envisioned
architectures of next generation computing systems in section 2. Building on
this model we define the research goal underlying this work and conduct a
comprehensive requirements analysis for the infrastructure to be designed (3).
In section 4 we give an overview on related research projects and show how
current efforts still fail to fulfill at least some of the identified requirements.
Subsequently we present the design of our own infrastructure aiming at closing

1http://aws.amazon.com

www.manaraa.com

From Service Markets to Service Economies 147

this gap between conceptual requirements and currently available technology in
section 5. We will conclude this paper with a short conclusion and overview on
future work.

2. Vision for Next Generation Distributed Computing:
Service Economies

In order to derive a model for future service systems it is crucial to understand
the paradigms that are currently employed in distributed information systems
and identify similarities and differences. Based on these developments a trend
of ideas and paradigms can be extracted leading to a well-founded scenario
definition for our work.

The technical paradigm underlying most of the developments in distributed
information systems in the recent years is the service orientation (SO). The main
idea of SO is that every function offered by humans, organizational entities or
computer systems, is viewed as an abstract service, which in turn can again be
combined with other services to create more complex composite services and so
forth. According to the general agreement in the literature a service as applied
in SO systems thus represents an individually addressable software component
that [7]

provides some functionality to a service requester,

can be accessed over an electronic network, such as the Internet,

hides technical implementation details from the SC, as it only advertises
its interface

and is loosely coupled to the other services and SCs. (This means that
their interactions are not hardcoded in each individual service, but every
SC discovers and binds a given other service it interacts with at runtime.
This is already exploited in electronic service markets today, where
formerly unknown SP and SC components even automatically negotiate
over a prospective service invocation; see for example CATNETS2 or
SORMA3).

Additionally another paradigm for distributed coordination of electronic
resources, crossing organizational boundaries emerged: Grid Computing (GC).
GC is mainly concerned with “coordinated resource sharing and problem solv-
ing in dynamic, multi-institutional virtual organizations” [8]thus first and fore-
most representing systems that “coordinate [...] resources that are not subject

2http://www.catnets.uni-bayreuth.de
3http://www.sorma-project.org

www.manaraa.com

148 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

to centralized control” [6], ranging from computational and storage resources
to code repositories [8]. In doing so GC systems attempt “to deliver nontrivial
qualities of service”, following the vision of the “utility of the combined system
[being] significantly greater than that of the sum of its parts” [6].

Building on GC and SO technologies and virtualization techniques, the most
recent trend in distributed computing was realized: Cloud Computing (CC).
Buyya defines CC as: “[...] a type of parallel and distributed system consisting
of a collection of interconnected and virtualized computers [...] presented as
one or more unified computing resources based on service level agreements
established through negotiation between the service provider and consumers”
[4]. Following this rationale Liu and Orban also stress the fact that these services
are remotely consumed on demand [10].

All of these developments in today’s distributed systems point to the same
vision of the future Internet based on highly dynamic networks of composable
services, offered and consumed on demand and on a global scope.

On a technical side it can be observed that all current paradigms build on very
similar interaction technologies. The majority of services employ Web Service
standards and the Internet as a communication platform. On the other hand these
infrastructures differ slightly in the way the individual services are managed
and used on a higher abstraction level. This is especially noticeable when
looking for example at the applied invocation paradigms. However, not building
on different technologies but only using them differently should not prevent
a development of consolidation and integration of paradigms as a next step
towards more powerful and efficient global systems. This is what many experts
in research and industry envision as the next step in distributed computing and
business, an economy of electronic services.

This vision takes the main idea of SO, the design of distributed systems in
terms of interoperable and composable services, one step further. It rigorously
focuses on the goal of an Internet-based service economy similar to the real-
world service sector. Digital services will be offered over digital service markets,
purchased by respective customers and then combined with internal or other
external services to business workflows of varying complexity. Such a service
economy will explicitly focus on the orchestration of a number of services from
outside and inside a company to achieve higher utilities than the individual
services would, just as GC. As proposed with the CC paradigm services will be
invoked on demand and therefore have to be deployed on virtualized platforms
to satisfy the QoS restrictions posed by the customers. In addition to the
combination of these concepts the envisioned settings will focus much more on
new business models and the commercial application of the SO ideas. These
will concern trading processes down to the level of an individual service, and
the subsequent charging based solely on its usage and delivered QoS. In such
a system even very small and specialized companies can find a niche in the

www.manaraa.com

From Service Markets to Service Economies 149

digital economy where they can compete with the ubiquitous international
companies, which in turn have to face a much higher competition on a global
market, ultimately leading to increasing service quality [5].

Summarizing the service economy scenario model results in the following
set of characteristics [15]:

The IoS focuses on a (potentially huge) set of electronic services of
varying complexity.

These services will be employed in potentially mission-critical business
processes and thus have to fulfill a (pre-negotiated) set of QoS guarantees
as stated in a SLA.

New business models will cope with the possibility of trading even
individual services and charging them based on their actual usage.

It will consist of a global set of SPs, SCs negotiating over digital services
employing some mediating nodes such as service brokers and market
makers.

Arguably, other scenarios for the future Internet are also possible, for example
ones in which only very basic services, and thus SLAs, are traded, just as with
current CC platforms. However, a scenario more or less similar to our model
seems the most probable, given the current and past developments.

3. Research Goal and Requirements

Two of the main challenges for future SEs from a commercial perspective
are reliability of the services traded and the technical infrastructure underlying
the service economy. In such settings the need for guaranteed reliability and
service quality becomes more prominent, as no longer the question of who
provides the service matters but only whether he is able to achieve the requested
result. Negotiated service quality guarantees are to be stated in potentially very
fine-grained SLAs between SC and SP, acting as a signed contract governing the
subsequent service invocation [4]. Based on such a SLA the actual execution of
the service can be monitored in order to assess the compliance to the contract,
eventually triggering some corrective measures in case of a SLA violation.

Additionally, differences in system configuration, or the services actually
traded, demand different negotiation protocols in order to reach the highest-
possible efficiency of the overall system. Each of the individual domains
depicted above potentially favors a different negotiation protocol (e.g. Grids
that favor Reverse Auctions for job submitters to buy standardized Grid Services
from multiple providers, whereas SO systems, due to the potentially very
complex services, will probably favor bargaining protocols). Based on these
findings and the global context of the envisioned scenario it is not likely or even

www.manaraa.com

150 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

efficient, that only one central marketplace for electronic services will emerge,
offering a single, known protocol. Instead a system of marketplaces offering
different protocols probably will emerge, each of which will best be suited for a
given set of negotiated services in a specific context.

Fortifying this, we argue that restricting SCs or SPs in that they are only
able to interact with one distinct service market, e.g. the domain they were
implemented for (GC or CC), and are therefore only technically compatible
with the applied negotiation protocol for this domain, unnecessarily decreases
the potential flexibility and efficiency of the whole system. SC should be able to
buy, and therefore negotiate about, any fitting service, regardless of the market
it is offered in and thus regardless of the protocol with which they are offered.
Additionally, given the dynamic nature of distributed workflow executions and
the increased complexity of global service selection manual negotiations of the
human users are by far not efficient enough. This process should be automated
by electronic software agents that negotiate on the users’ behalf.

Research Goal. The research goal of this work is thus to develop a generic,
service-based architecture as well as a set of protocols and data structures acting
as a basic infrastructure for software agents to discover and negotiate about
electronic services independent of the actual negotiation protocols applied.

Requirements Analysis. We will now derive a set of conceptual require-
ments for a service management overlay that aims at supporting the flexible
discovery and negotiation of services for SLA-based service economies.

Requirements for the discovery phase:

After the discovery phase all parties must have a common understanding
of the protocol to be executed in the negotiation phase [11].

This common understanding must be generated dynamically at runtime
[3].

Requirements for the negotiation phase - Negotiation Object:

Services (and thus SLAs) of different complexity must be negotiable
[13].

Possible offers should be restrictable, incl. non-negotiable SLA terms
[17]. This allows for the distinction of service properties that are under
negotiation and those that aren’t.

Negotiation phase - Protocol / Setting:

Different marketplaces and protocols (fixed-price catalogues, bargaining,
auctions etc.) even within one market are needed for different services to
be traded [13].

www.manaraa.com

From Service Markets to Service Economies 151

Service requesters and consumers must be able to start the negotiation
[17]. This way not only a request for a service can be communicated but
also a service offering can be actively proposed to potential SCs.

Negotiation phase - Strategy / Participants:

Software agents should act as negotiators [11].

Negotiators must be able to act on different markets, even simultaneously
[3].

Intermediaries, such as auctioneers or brokers, should be present.

Before presenting the architectural design of our work we will now give an
overview on related research efforts in that area.

4. Related Work

The commercial vision of a service economy heavily builds on negotiation
theory and different negotiation protocols developed therein. Such negotiation
protocols crucially define a negotiation’s outcome by “determin[ing] the way
offers and messages [...] are exchanged” [2, p. 317]. As a next step these
findings are ported to the digital world, forming the new research discipline of
Electronic Negotiations [2]. On the one hand respective researchers came up
with formal descriptions and characterizations of given negotiation protocols,
on the other hand increasing computing power allowed for the definition of new
negotiation protocols, which would not work efficiently with human negotiators,
such as multi-attribute auctions.

Additionally scientists constantly improved software agent technologies,
finally allowing for the implementation of very complex bidding strategies in a
fully automated fashion [14]. International research projects such as SORMA
bring the vision of agent-based service markets to life in Grid environments.
ZIMORY4 can be seen as an industrial implementation of a service market,
though not based on software agents.

QoS guarantees (as well as SLAs as their contractual representation) have
risen after traditional distributed systems came to maturity and reliability came
into focus. Significant work was done in the area of SLA languages or ar-
chitectures of SLA based systems by researchers such as Ludwig and Keller
[12]or Yarmolenko and Sakellariou [16]. An ever growing amount of research
projects, such as CoreGRID5 already employ SLAs for resource management
and thus have done the first step towards our infrastructure vision. However,
they still lack a integration of multiple negotiation protocols and service markets

4http://www.zimory.com
5http://www.coregrid.net

www.manaraa.com

152 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

at runtime. Nevertheless the ongoing Web Services Agreement [1]standardiza-
tion effort at the Open Grid Forum6 shows the growing interest for SLA-based
infrastructures from both research and industry.

Surprisingly, there is little research done in combining the economic consid-
erations concerning negotiations on the one hand and QoS/SLA developments
on the other hand. As the GC projects pioneered in combining digital resources
on a large scale, mostly Grid projects stand out in terms of developed SLA ne-
gotiation mechanisms. However even those projects mainly focus on static and
centralized architectures within which only one particular, and fixed, negotiation
protocol is implemented, e.g. OntoGrid [14]using the (Iterated) ContractNet or
NextGRID7 the Discrete Offers Protocol). Hence those systems allow for the
definition of individual service markets. However such systems such systems
still lack the possibility for SCs and even SPs to migrate at runtime from one
market to another (in analogy to a real-world economy).

Although a common understanding states the need for flexible negotiations,
only a few research efforts incorporate the mere possibility of different protocols
in SLA negotiations. [11] and [3]being two of the most prominent examples.
However, those frameworks still lack important flexibility by restricting the ne-
gotiation protocols to a small and fixed set and by building on static, centralized
architectures without appropriate discovery mechanisms.

5. Design Proposal for a protocol-generic SLA Discovery
and Negotiation Infrastructure

The traditional service usage cycle is no longer suitable in the envisioned
settings. It has to be extended by the means to integrate SLA negotiations in a
flexible way. Figure 1 presents such an extended service usage cycle suitable
for the envisioned SEs.

When discovering a required service, the agents thus have to perform an
additional step within the discovery phase compared to the traditional cycle:
they have to discover the negotiation protocol description document(s) associ-
ated with this given service, too. This way, the basis for the decision among
competing services is broadened by the knowledge in which way a SP offers an
acceptable SLA negotiation style.

Subsequently the agents negotiate about the service, according to the protocol
as described in the description document, and create the SLA. From here on the
process adheres to the traditional service usage cycle and executes the binding,
execution and release steps. However, in a commercial setting additional

6http://www.ogf.org
7http://www.nextgrid.org/

www.manaraa.com

From Service Markets to Service Economies 153

Discovery

Negotiation

SLA Creation

BindingExecution

Monitoring

Releasing/
Postprocessing

Service Protocol
Description

Renegotiation

Figure 1. Service Usage Cycle in an electronic Service Economy

monitoring may become crucial as well as optional post-processing steps, such
as the rating of a given transaction partner.

The abstract design idea of our infrastructure, building on the above men-
tioned requirements, is to define a digital negotiation protocol description in
such a way, that software agents can both parse and subsequently interpret it in
a fully automated fashion.

Service Type
Definition

SLA-Template(s) Negotiation Protocol
Description(s)

Figure 2. Triangular Relationship between Service Description Documents

www.manaraa.com

154 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

A triangular relationship as seen in figure 2 between the involved, service-
related documents will be created: service type definition (e.g. its interface),
SLA (template) and the respective protocol description(s). Service interfaces
represent the core concept within the SO vision, as they define the service’s ca-
pabilities independent of its actual implementation. SLA templates are basically
not completely filled in and agreed upon SLAs, which are to be finalized during
the actual negotiation process. This way the SP can a priori specify ranges
of possible guarantees and thus limit the actual negotiation space. Finally the
protocol description defines how an SLA (probably based on a given template)
for a given service can be negotiated.

Building on these description documents, a layered reference architecture
for a service economy as we envision it can be derived. On the lowest layer
the actual services (SP) are located along with their consumers (SC). Each of
those is directly associated with a service management agent on the Service
Management Layer, in analogy to [1]. These agents are responsible for the
efficient management of the underlying services in terms of selling or purchasing
other services from the service layer.

As opposed to traditional views on service systems our approach further
subclassifies the Service Management Layer into a Market Layer and an Econ-
omy Layer. The former comprises all management agents acting as market
participants and negotiating over service invocations (thus over SLAs) as well
as a set of optionally used market intermediaries such as brokers or market
makers. Many of today’s research projects aim at this layer and, what is even
more important, implement SC and SP components for only this layer, moreover
for one particular market present in this layer (characterized among others by
a distinct negotiation protocol). In our view another layer must be introduced
enabling SPs and most importantly SCs to migrate between individual service
markets and adapt to the new context. In supporting this task a distributed
infrastructure of service document registries is needed similar to those currently
present in individual service markets.

From a data perspective the individual SPs and SCs have a set of private
data concerning reservation values for the SLA negotiations, utility functions or
offered starting prices. On the other hand the service description documents,
such as SLA templates and protocol descriptions, are openly published at the
registry infrastructure for subsequent discovery by potential transaction partners.
Figure 4 gives an overview of this architecture.

6. Conclusion and Future Work

In this paper we argued for a development in distributed computing from
service markets, as present today, towards service economies as a paradigm
for future distributed computing environments. In doing so we derived a de-

www.manaraa.com

From Service Markets to Service Economies 155

Service Layer

Service Management
Layer

Economy Sublayer

Market Sublayer

SPs and SCs

distributed
Registries

Intermediaries

Management Agents

SLA

bid

lookup negotiation
partner / market (i. e. broker)

agree

Figure 3. Abstract Architecture of the future Service Economy

tailed scenario model for this vision and deducted a set of requirements for
infrastructures supporting it. Building on these requirements we presented a
novel architecture design based on a set of structured description documents
and employing software agent technology.

Current and future work comprises the definition of a protocol description
language ([9]) as well as the implementation of a proof-of-concept prototype
for our approach. Once this system is finished, we will conduct extensive
evaluation runs to investigate how such a system of many different services and
protocols performs compared to single-protocol markets regarding efficiency
and robustness.

References

[1] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne, J.
Rofrano, S. Tuecke, and M. Xu. Web services agreement specification, version 03/2007.
2007.

www.manaraa.com

156 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

[2] M. Bichler, G. Kersten, and S. Strecker. Towards a structured design of electronic
negotiations. Group Decision and Negotiation, 12(4):311–335, 2003.

[3] I. Brandic, S. Venugopal, M. Mattess, and R. Buyya. Towards a meta-negotiation archi-
tecture for sla-aware grid services. Technical Report, University of Melbourne, August
2008.

[4] R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing and
emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility.
Future Generation Computer Systems, 25(6):599–616, 2009.

[5] Theseus Project Consortium. Texo business webs im Internet der Dienste (german).
http://theseus-programm.de/anwendungsszenarien/texo/default.aspx, 2009. last checked:
13. 01. 2010.

[6] I. Foster. What is the grid? a three point checklist, 2002.

[7] I. Foster. Service-oriented science. Science, 308(5723):814–817, 2005.

[8] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable virtual
organizations. International Journal of Supercomputer Applications, 15:2001, 2001.

[9] S. Hudert, T. Eymann, H. Ludwig, and G. Wirtz. A negotiation protocol description
language for automated service level agreement negotiations. In Proceedings of the 11th
IEEE Conference on Commerce and Enterprise Computing (CEC 09), Vienna, Austria,
2009.

[10] H. Liu and D. Orban. Gridbatch: Cloud computing for large-scale data-intensive batch ap-
plications. In Proceedings of the 8th IEEE International Symposium on Cluster Computing
and the Grid 2008 (CCGRID08), pages 295–305, 2008.

[11] A. Ludwig, P. Braun, R. Kowalczyk, and B. Franczyk. A framework for automated
negotiation of service level agreements in services grids. In Lecture Notes in Computer
Science, Proceedings of the Workshop on Web Service Choreography and Orchestration
for Business Process Management, 2006, Vol. 3812/2006, 2006.

[12] H. Ludwig, A. Keller, A. Dan, R. King, and R. Franck. A service level agreement language
for dynamic electronic services. Journal of Electronic Commerce Research, 3:43–59,
2003.

[13] D. Neumann, J. Stoesser, C. Weinhardt, and J. Nimis. A framework for commercial grids -
economic and technical challenges. Journal of Grid Computing, 6(3):325–347, September
2008. ISSN: 1570-7873.

[14] S. Paurobally, V. Tamma, and M. Wooldridge. A framework for web service negotiation.
ACM Trans. Auton. Adapt. Syst., 2(4):14, 2007.

[15] C. Schroth and T. Janner. Web 2.0 and SOA: Converging concepts enabling the internet of
services. IT Professional, 9(3):36–41, 2007.

[16] V. Yarmolenko and R. Sakellariou. Towards increased expressiveness in service level
agreements: Research articles. Concurr. Comput. : Pract. Exper., 19(14):1975–1990, 2007.

[17] W. Ziegler, O. Waeldrich, Ph. Wieder, T. Nakata, and M. Parkin. Considerations for
negotiation and monitoring of service level agreements. Technical Report TR-0167,
CoreGRID, June 2008.

www.manaraa.com

SERVICE LEVEL AGREEMENTS IN BREIN

Bastian Koller
Hoechstleistungsrechenzentrum Stuttgart, Stuttgart, Germany
koller@hlrs.de

Henar Munoz Frutos
Telefonica Investigacin y Desarrollo S.A, Spain
henar@tid.es

Giuseppe Laria
Centro di Ricerca in Matematica Pura ed Applicata, University of Salerno, Italy
laria@crmpa.unisa.it

Abstract With electronic business (eBusiness) becoming ubiquitous, the traditional ways
of doing commerce need to be changed or completely replaced to support the
end users effectively in performing their business. This includes especially the
representation of business relationships with an electronic format to allow for
automated processing of the respective parts of e.g. contractual obligations.
One prominent representation tool are Service Level Agreements. Conceptually
established as paper representation to describe parts of contracts of telecom
operators, SLAs have become a research topic in the ICT domain now since
several years.
However, the current State of the Art in Service Level Agreements and their
management, still shows several deficits, which prevented the uptake of eBusiness
solutions (based on Service Level Agreements) so far. This paper will present
how the BREIN project enhanced, amongst others Service Level Agreement
Management with capabilities from the Multiagent and Semantic domain, to
provide an enhanced solution, compared to existing technologies. Thereby the
main emphasize was on basing the developments on existing results to concentrate
on gap filling instead of re-invention of the wheel.

Keywords: BREIN, SLA Management, SLA lifecycle, Semantic Annotations, Multiagent
Negotiation, SA-SLA, SLA Schema, WS-Agreement, WSLA

P. Wieder et al. (eds.), Grids and Service-Oriented Architectures for Service Level Agreements,
DOI 10.1007/978-1-4419-7320-7_14, © Springer Science+Business Media, LLC 2010

www.manaraa.com

158 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

1. Introduction

Todays market needs get more and more complex every day. As opposed to
the past where Service Providers could establish their business in a known and
limited domain, today a flexible adaptation of their service portfolio is needed.
Especially to ensure competitiveness with other players.
Whilst this adaptation is a ’non-blocker’ for huge market players (once they
decide to adapt a service and its capabilities, they can invest in this), this has
a huge impact on Small and Medium Enterprises (SMEs). As they are often
bound to their specialized services, enhancements/adaptations would imply
high investments, which is simply not affordable for them.
With regard to this, the concept of outsourcing is still seen as an key enabler for
increasing the competitiveness of SME. Especially in the electronic business
(eBusiness) market, this implies to ensure that outsourcing and collaborations
are supported in a proper way, to guarantee the correct execution of services
with respect to guaranteed (and agreed upon) obligations. All this, by not putting
more burden on the respective end users but rather simplifying the access to and
use of eBusiness platforms in an intelligent way.
The BREIN 1 project was created to exactly address this support by enhanc-
ing the classical Grid solutions by integrating Multiagent and Semantic Web
concepts to a dynamic, standard based environment for eBusiness. Thereby
the main emphasize was to move away from the Grid approach of handling
individual resources, up to a framework, allowing to provide and sell services
which represent a combination of different resource types.

2. Addressing SLAs

Within BREIN, Service Level Agreements are an important piece of the
overall BREIN architecture in terms of concepts and component design. SLA
Management in this particular case was foreseen to provide the necessary
business bits which go beyond the limitations of classical (academic) grid
approaches.

Thereby the handling of the SLA lifecycle is addressed by a split in two parts
- SLA Management and SLA Representation (cf. Figure 1). Generally speaking,
on a conceptual level there should be no dependencies of an SLA Management
Framework on a SLA Schema and vice versa. Of course, on the implementation
level this statement will become at least partially obsolete.

Figure 2 shows the SLA Lifecycle as addressed by BREIN. For reasons of
simplicity, the phase of discovery and negotiation are combined in one phase -

1BREIN - Business Objective Driven Reliable and Intelligent Grids for Real Business

www.manaraa.com

Service Level Agreements in BREIN 159

BREIN SLA Lifecycle

SLA Representation (The Schema)

SLA Management (The Components)

Figure 1. The BREIN SLA concept

creation. The single phases are as follows:

Development of Service and SLA Templates

Creation: Discovery and Negotiation of an SLA

Service Provisioning and deployment

Execution of the Service

Assessment and corrective actions during execution (parallel phase to
execution of the service)

Termination and Decommission of the Service

3. The SLA Schema

3.1 General Issues

In the recent years a set of approaches towards the definition of SLA Schemas
have been elaborated, but all of them are still rather in a semi-mature state than
product-ready. The two most popular approaches, which also show the highest
degree of maturity, are WS-Agreement [2]and WSLA [1]. WSLA, published
by IBM, aimed to provide a specification for the definition and monitoring of
Service Level Agreements within a Web Service environment. It was published
in 2003 but there were no more updates following.
WS-Agreement, which is a specification developed within the Grid Resource

www.manaraa.com

160 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

Figure 2. The different phases of the SLA lifecycle

Allocation Agreement Protocol Working Group of OGF2 (GRAAP-WG), pro-
vides a protocol for establishing agreement on the usage of services between
a service provider and a consumer. Version 1.0 of this specification was pub-
lished in 2007. It defines a language and protocol to represent: the services
of providers, create agreements based on offers and aims for monitoring the
agreement compliance at runtime.
BREIN follows the approach of merging WS-Agreement and WSLA (cf. Figure
3 which was already investigated in the TrustCoM [3]project. WS-Agreement
is taken to set the frame and basic structure of the SLA, whilst WSLA is taken
to describe the respective SLA parameters, metrics and how they are measured.

3.2 Semantic Annotations

As mentioned in the introduction, BREIN decided to integrate Multiagent and
Semantic Web concepts where applicable to enhance the support of eBusiness
end users in setting up and maintaining their business relationships. In previous
activities with regard to SLA and their management, it became obvious, that
existing solutions work fine, once the involved entities base their messages on a
common language with common terminology.
However, if they use different terminologies, especially the discovery of ser-
vices and the negotiation of an agreement will become nearly impossible. Also
different Service Providers offering the same kind of service could loose compet-
itiveness due to use of different terms, describing the same service capabilities.

2The Open Grid Forum, Website: http://www.ogf.org

www.manaraa.com

Service Level Agreements in BREIN 161

Agreement Template Structure WSLA Structure

Name

Context

Terms Compositor

Agreement Creation Constraints

Service Description Terms

Guarentee Terms

Parties

Service Definition

Obligations

SLA Parameters

SLA Metrics

BREIN Template Structure

Name

Context

Terms Compositor

Agreement Creation Constraints

Service Description Terms

Guarentee Terms

Service Definition

SLA Parameters

SLA Metrics

Service Level Objective

Action Guarantee

Validity

Expression

Validity

Expression

Figure 3. The BREIN SLA Template integrating parts of WS-Agreement and WSLA

Therefore it becomes obvious, that a grid for business such as BREIN needed
to enhance the interpretation capabilities of SLA Management components to
allow for automated processing of service requests, service offers and service
(level) agreements.
Intentionally, BREIN has chosen to build its respective developments on top
of an existing specification, namely WS-Agreement as the definition of a com-
pletely new specification or an adaptation of an existing would have increased
the danger of getting more interoperability problems. With this, backward
compatibility is ensured which is an important indicator for future uptake. If an
annotation is found, additional reasoning is feasible, if not the SLA document
is proceeded as planned.
The whole specification is called ’Semantic Annotated Service Level Agree-
ments’ - SA-SLA [4], [5]. An example is given in the listing below. The
annotation hereby carries a reference to a concept in a semantic model (in this
case the BREIN Business Ontology) that provides a high level description of a
Quality of Service metric which can be interpreted by the Negotiation Broker
in a meaningful way.

<SLAParameter name="Total Cost" type="double" unit="Euro"

satsla:modelReference="http://eu-brein.com/ontology/Upper/

QoS#Cost">

www.manaraa.com

162 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

<Metric>Total Cost Metric</Metric>

</SLAParameter>

4. The BREIN Architecture

To set the scene, Figure 4 presents an overview of the overall BREIN archi-
tectural building blocks. Within the project, each of this blocks was refined
and contained at the end a set of components, enabling the respective block
functionalities. Looking at this Figure, it is obvious, that SLA Management
is a central block, with connection to all other components. The BREIN SLA

Management group

Infrastructure capabilities

GOAL

Figure 4. The overall BREIN Architecture

Architecture, as detailed presented in the official public BREIN architecture
deliverable [6]covers all different phases of the SLA Lifecycle. As a detailed
description of the design and the functionalities of the SLA Framework would
exceed the limit of this paper, this section will only present as example the archi-
tectural set up as needed for discovery and negotiation, respectively the creation
phase. Thereby the main focus will lie on the enhancements of functionalities
by integrating Multiagent and Semantic concepts.

4.1 Creation

Creation of Service Level Agreements in BREIN targets to allow for en-
hanced discovery of services (and their provider) on basis of SLA capabilities.
To allow simple access, the goal was to enable Customers to define their re-

www.manaraa.com

Service Level Agreements in BREIN 163

quirements in ’their preferred’ language whilst the system is able to understand
these terms and to perform discovery accordingly. This shall prevent to put the
burden of learning the used SLA language on the end users of the system.
Furthermore, BREIN provides the capability of dynamic negotiation of QoS
terms on architectural level. This allows for applying different types of negotia-
tion protocols - from discrete offer negotiation (single phase) to multi-round
(multiphase) negotiation. In the respective domains of Service Consumer and
Service Provider, the decision is taken (or at least supported, depending on
the preference of the user) if a service may be offered and under which cir-
cumstances (parameters, payment, etc). This allows for optimized negotiation,
taking into account business goals and business policies and also enabling
actions like intentional violation of Service Level Agreements in case of over-
lapping priorities.
The respective architecture is shown in Figure 5. I Without integration of se-

Figure 5. The Creation Architecture

mantic aware components, these enhancement would not be possible. They are
the key enabler for a ’common basis’ of term exchanges. Namely they are, as
seen in Figure 5: hancements are:

www.manaraa.com

164 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

SLA Translator - a semantic component which is an ontology repository
for local domain ontologies. Every domain has an own SLA Translator
instance.

SLA Mediator - a semantic component which is able to match SA-SLA
requests and offers by converting SLA documents to the local model.
It either gets the needed ontology from the SLA Translator or, in case
the ontology is not available, it queries a third party ontology repository.
Every domain has an own SLA Mediator instance.

Ontology Repository - a semantic component, which is similar to the SLA
Translator an ontology repository. Here Customer and Service Provider
can register/store their ontologies to allow retrieval for others, in case
they want to interact with them.

In terms of flexibility in negotiation, BREIN provides the optional usage of
Multiagents to act on behalf of Customer/Service Provider. By this, the list
of potentially used negotiation protocols is extended, amongst others, to an
adaption of the Contract Net Protocol [7]- the Combinatorial Contact Net
Protocol as presented in [8]. In practice, the BREIN framework allows the
move of negotiation functionality from the SLA Negotiator to Multiagents,
whilst making it not mandatory. This is another example for the non-intrusive
nature of the BREIN developments, which always leave the choice of additional
enhanced capabilities up to its end users.

5. Conclusion

In general the integration of Multiagent and Semantic concepts into the Grid
has shown a lot of advantages. Where ’classical’ Grid developments acted rather
inflexible before, the variety of choices of different languages and protocols has
increased with the enhanced BREIN concepts. At the end of the project, most
of these concepts were validated by respective demonstrations of the realized
components aligned with two completely distinct use cases, one coming from
the HPC domain and one providing a logistics scenario at an Airport.
Especially the SA-SLA specification has the potential to influence current
standardization activities, and is intended to be brought in the respective bodies.

www.manaraa.com

Service Level Agreements in BREIN 165

References

[1] A. Keller and H. Ludwig. The WSLA framework: Specifying and monitoring service
level agreements for web services. Journal of Network and Systems Management, Vol. 11,
pages 57–81,March 2003.

[2] A. Andrieux, H. Ludwig, et al., Web Services Agreement Specification (WS-Agreement),
Technical Report, Open Grid Forum - Grid Resource Allocation and Agreement Protocol
Working Group, 2007.

[3] M. Wilson, A. Arenas, and L. Schubert, D63 - Trustcom Framework V4, Technical Report,
The TrustCoM Project, 2007

[4] I. Kotsiopoulos, I. Soler Jubert, A. Tenschert, J. Benedicto Cirujeda, and B. Koller. Using
Semantic Technologies to Improve Negotiation of Service Level Agreements. In Exploit-
ing the Knowledge Economy - Issues, Applications, Case Studies, Vol. 5 (eChallenges
2008, Stockholm, Sweden, October 2008), IIMC International Information Management
Corporation, pages 1045–1052, 2008.

[5] I. Kotsiopoulos, H. Munoz Frutos, B. Koller, S. Wesner, and J. Brooke. A lightweight
semantic bridge between Clouds and Grids. In Proceedings of the eChallenges 2009
Conference (eChallenges 2009, Istanbul, Turkey, October 2009), IIMC International
Information Management Corporation, 2009. ISBN: 978-1-905824-13-7.

[6] G. Laria and other members of the BREIN consortium, Final Brein Architecture - D4.1.3
V2.Website: http: www.gridsforbusiness.eu, July 2009.

[7] FIPA Contract Net Interaction Protocol Specification, http://www.fipa.org/specs/fipa00029

[8] P. Karaenke and S. Kirn. A Multi-tier Negotiation Protocol for Logistics Supply Chains,
Proceedings of the 18th European Conference on Information Systems (ECIS 2010),
Pretoria, South Africa, June 7-9, 2010.

www.manaraa.com

NEGOTIATION AND MONITORING OF SERVICE

LEVEL AGREEMENTS∗

Thomas B. Quillinan
D-CIS Lab
Thales Research and Technology
Delft, The Netherlands

thomas.quillinan@d-cis.nl

Kassidy P. Clark, Martijn Warnier, Frances M.T. Brazier
Systems Engineering
Faculty of Technology, Policy and Management
Delft University of Technology
The Netherlands

[k.p.clark, m.e.warnier, f.m.brazier] @tudelft.nl

Omer Rana
School of Computer Science/Welsh eScience Centre
Cardiff University, UK

o.f.rana@cs.cardiff.ac.uk

Abstract Service level agreements (SLAs) provide a means to define specific Quality of
Service (QoS) guarantees between providers and consumers of services. Ne-
gotiation and definition of these QoS characteristics is an area of significant
research. However, defining the actions that take place when an agreement is
violated is a topic of more recent focus. This paper discusses recent advances
in this field and propose some additional features that can help both consumers
and producers during the enactment of services. These features include the abil-
ity to (re)negotiate penalties in an agreement, and specifically focuses on the
renegotiation of penalties during enactment to reflect ongoing violations.

Keywords: monitoring, penalties, negotiation, automation, ws-agreement

∗This paper extends preliminary work reported at the 5th International Workshop on Grid
Economics and Business Models [12]

P. Wieder et al. (eds.), Grids and Service-Oriented Architectures for Service Level Agreements,
DOI 10.1007/978-1-4419-7320-7_15, © Springer Science+Business Media, LLC 2010

www.manaraa.com

168 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

1. Introduction

A Service Level Agreement (SLA) is an agreement between clients and
providers in the context of a particular service provision. SLAs may be between
two parties, for instance, a single client and a single provider, or between
multiple parties, for example, a single client and multiple providers. SLAs
specify Quality of Service (QoS) properties that must be maintained by a
provider during service provision – generally defined as a set of Service Level
Objectives (SLOs). Often an SLA is only relevant when a client directly invokes
a service (rather than through an intermediary – such as a broker). Such direct
interaction also implies that the SLOs need to be measurable, and must be
monitored during the provision of the service.

Significant work exists on how SLOs may be specified and monitored, such
as [7]. Furthermore, some work has focused on actually identifying how SLOs
may be impacted by the choice of specific penalty clauses [3, 12, 13]. A trusted
mediator may be necessary to resolve conflicts between involved parties. The
outcome of conflict resolution depends on the situation: penalties, impact on
potential future agreements between the parties and the mandatory re-running of
the agreed service, are examples. While it may seem reasonable to penalize SLA
non-compliance, there are a number of concerns when issuing such penalties.
For example, determining whether the service provider is the only party that
should be penalized, or determining the type of penalty that is applied to each
party.

Automating conflict resolution processes can provide substantial benefits.
In general, there are two main approaches for contractual penalties in SLAs:
reputation based mechanisms [1, 5] and monetary fines. It is useful to note
that often obligations within an SLA are primarily centered on the provider
towards the client. An SLA is therefore an agreement between the provider to
offer particular QoS to a client for some monetary return. This paper does not
consider scenarios where there is also an obligation on the client towards the
provider. An example of such a scenario could be where a provider requires
the client to make input data available by a certain time frame to ensure that a
particular execution time target is met. If the client is unable to meet the deadline
for making such data available, the penalty incurred by the provider would no
longer apply. However, similar techniques to those outlined in this paper will
apply. Moreover, this paper assumes the Grid’s client/provider division of tasks,
but could also be extended to apply to agreements between two independent
entities.

An aspect of penalizing violations of existing agreements that has not re-
ceived much attention is how agreements could, or should, be renegotiated
during the enactment of the service. A graduated response to violations, as
proposed by [12], functions as a post facto reaction to the violation that al-

www.manaraa.com

Negotiation of SLAs 169

lows some level of violations with a lesser penalty. Alternatively, providing
a renegotiation mechanism has specific advantages: for example, graduated
responses can lead to implicit incentives for bad behavior, up to the threshold.
For example, if the provider had the option to provision a second consumer
knowing that the graduated penalty would be less that the reward for a second
service provisioning. In contrast, a renegotiation mechanism allows a more
reactive system, where if conditions have altered, producers and consumers can
alter the agreement to match those conditions.

In this paper, a number of recent proposals (from [3, 8, 12, 13]) in the area of
service violations and penalties negotiation, as well as suggesting approaches
that could be used to support renegotiation of SLAs during enactment. The
remainder of this paper is organized as follows: Section 2 discusses WS-
Agreement and how it can be used to formulate agreements between clients
and providers. Monitoring these agreements is discussed in Section 3, where
different methodologies are examined. Violations of SLAs is examined in
Section 4 and a number of proposals for the future of SLA negotiation and
penalties are offered. Finally, Section 5 concludes the paper.

2. Background

WS-Agreement [2] provides a specification for defining SLAs, and is under-
going standardization by the Open Grid Forum (OGF). WS-Agreement is an
XML document standard, that is, interactions between clients and providers are
performed using an XML standardized format. There are two types of XML
documents in WS-Agreement: templates and agreements. One basic element is
that agreements need to be confirmed by both parties. Including penalties in a
WS-Agreement, for example, cannot be one-sided. The WS-Agreements needs
to be confirmed by the client. The existing WS-agreement specification, how-
ever, will need to be extended to include this step. Mobach et. al. [9] proposed
such an extension in the context of the WS-Agreement specification.

Figure 1 shows the extended interactions between a service provider (SP)
and a consumer (C) described by [9]. The advertisement phase uses WS-
Agreement template documents; the request and offer phases also use WS-
Agreement agreement documents. Templates describe the different services
that the provider supports. When a negotiation takes place, the service provider
sends these templates to the consumer. The consumer then makes an offer to
the provider and, if acceptable, the agreement is created by the provider based
on the offer. In Figure 1, the initial template is generate by the provider, in
accordance with the WS-Agreement specification.

Templates and agreements both use the concept of negotiation terms. Terms
define the service description and guarantees about the service. Guarantees are

www.manaraa.com

170 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

1. SP → C : Advertisement
2. C → SP : Request
3. SP → C : Offer
4. C → SP : Acceptance/Rejection

Figure 1. Negotiation using WS-Agreement

made relating to the service, such as the quality of service and/or the resource
availability during service provision.

Agreements have a name defined by the provider and a context that contains
meta-information about the agreement. This meta-information can include
identifiers for the service provider and the agreement initiator; the name of
the template that the agreement is based on; references to other agreements,
and the duration of the agreement [9], as agreements have a fixed period when
they are valid. Functional and non-functional requirements are specified in
the Terms section. This is divided into the Service Description Terms (SDT)
and Guarantee Terms (GT). A SDT holds the functional requirements for the
delivery of services, and may refer to one or more components of functionality
within one or more services. There may be any number of SDTs in a single
agreement. GTs hold a list of services that the guarantee applies to, with the
conditions that this guarantee applies, and any potential pre-conditions that
must exist.

3. Monitoring Violations in SLAs

Monitoring plays an important role in determining whether an SLA has been
violated, and thereby determine the penalty clause that should be invoked as a
consequence. From a legal point of view, monitoring appears as a pre-requisite
for contract enforcement. The basic requirement is a set of ‘consequences’ for
breaching the agreed SLOs. Service clients base their trust in service providers
largely on the provided monitoring infrastructure.

Monitoring facilitates a direct and automated SLA enforcement mechanism
at run-time and without undue delay (that is, once a SLA violation is recorded,
the agreed sanction can be automatically triggered). Monitoring also facilitates
a more traditional enforcement. In either case, if the provider or the client
contests the automatic sanction imposed, it can use monitoring data to argue its
case. It is therefore vital to monitor all those metrics that have legal relevance
and to give the parties the possibility to retrieve such data in a format that is
admissible as evidence.

Identification of violations is either discovered through online monitoring or
post facto auditing of the service enactment. However, while auditing allows

www.manaraa.com

Negotiation of SLAs 171

definitive decisions to be made, it is necessary that accurate logs are maintained
by the parties.

3.1 Online Monitoring

Monitoring an agreement requires periodically testing whether the agreement
terms have been met by all relevant parties. Depending on the agreement
terms, this either entails testing a specific variable, such as network latency, or
logging communication between consumer and provider. Monitoring intervals
are specified appropriately, such as daily or hourly, depending on the duration
of the agreement and the nature of the agreement terms. Monitoring must also
support both simple and complex evaluation formulae. For instance, some
requirements can be verified by measuring a single variable, such as ‘Host
is reachable’. However, other requirements can only be verified once a set
of measurements have been performed and their results stored, such as ‘Host
uptime is greater than 99%’.

A monitoring mechanism must take accurate measurements and be secure
against malicious parties, including the parties with whom agreements have been
reached. For instance, a log of communication should not be write accessible
to the parties involved: a secure logging mechanism [4] is required. Non-
repudiation is also of importance to prove that certain messages were sent by
a certain party, and a mechanism to prevent forged messages containing false
timestamps or false measurements from being inserted into the message log is
also required.

Furthermore, where a monitoring module is placed has to do with trust and
objectivity. [12] distinguishes three possible locations for monitoring:

Trusted Third Party (TTP): an independent module that can monitor
(and log) all communication between consumers and service providers.
Once the SLA is successfully completed, both parties receive a signed
ticket from the TTP that can be used for non-repudiation and/or reputation
building of the service provider. However, a TTP cannot measure the
internal state of either the consumer or provider.

Trusted Module at service provider: functionally equivalent to a TTP
but with access to the internal state of the service provider. However, the
provider may not reveal all of the internal state or may report incorrect
information to the monitor. A module at this location can show that the
provider attempted to avoid violations and dealt with them responsibly
when they occurred.

Trusted Module on the consumer site: functionally equivalent to a TTP
but it can be difficult to distinguish between provider delay and network

www.manaraa.com

172 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

delay. A module at this location is not particularly useful for measure-
ments, but only for establishing the trust level for certain providers.

An alternative to this online monitoring approach is to reactively monitor
agreements [8]. Reactive monitoring takes place when one of the parties
involved in the enactment ‘complains’ to the monitor that violations are taking
place. Such a scheme has the advantage of allowing an immediate response to
violations, without the overhead of monitoring every active service provisioning.
In the worst case using the approach of [8] entails the same overhead as an
online monitoring mechanism.

Passive monitoring is an offline monitoring scheme that uses cryptographic
primitives to prove that specified checkpoints in the enactment have been
reached correctly. Reactive monitoring extends such a passive monitor, in
that, should a checkpoint not be reached, the monitor reacts and starts actively
monitoring the enactment from that point forward.

3.2 Violations and Penalties

When a violation occurs, typically a penalty is incurred as a consequence.
Penalties can be as simple as terminating the current agreement and finding a
different provider, or more complex reputation or monetary based penalties [11].
These penalties are commonly used for service provisioning [6]. In these
systems, reputation is a community-wide metric of an entity’s trustworthiness.
This metric increases if the entity completes transactions without violating the
agreement. Conversely, the metric decreases if a term is violated. Reputation
based penalties utilize the notion that consumers prefer providers with a higher
reputation and try to avoid providers with a lower reputation. In contrast,
monetary based penalties operate on the assumption that consumers pay less
for poor service and more for better service.

Both of these mechanisms require additional infrastructure and security
measures [6]. A reputation based system requires a persistent record of all
transactions, both successful and violated. A monetary based system requires
a secure means of payment, whether in currency or credit, that has actual
value to the users of the system. Both of these approaches require a means of
guaranteeing that identities are unique, persistent and legitimate, as well as a
conflict resolution process. For instance, underlying authentication mechanisms
using a PKI can verify that users are indeed whom they claim to be.

Deposits with a jointly agreed TTP can be used in a monetary based system
to implement penalties if needed. In the event of violation, the deposit can be
used to effectuate penalty payment. The exact penalty terms can be separately
negotiated during SLA negotiation or according to known policies, such as the
following [12]:

www.manaraa.com

Negotiation of SLAs 173

All-or-nothing provisioning: provisioning of a service must meet all
SLOs. ALL of the SLO constraints MUST be met to satisfy the SLA;

Partial provisioning: provisioning of a service must meet some SLOs.
SOME of the SLO constraints MUST be met to satisfy the SLA;

Weighted Partial provisioning: provision of a service meets SLOs that
have a weighting GREATER THAN a [user specified] threshold.

For example, the SLA framework in AgentScape [10] has been extended to
support monitoring and penalty enforcement [3]. A trusted monitoring module
is required to measure the provided services and ensure that the GTs in the
SLA are being fulfilled by both parties. In addition to this trusted monitoring
module, the SLA document must be extended to include monitoring and penalty
clauses, similar to those described in [14]. This includes specifying the item to
be measured, time constraints, and the method to be used for measurement as
described the following example.

Negotiation of the violation policy is also required to determine, for example,
the severity of a violation and appropriate action using the policies introduced
above. [12] proposes negotiating this violation policy as a separate SDT during
the negotiation phase.

4. Negotiation of Penalties

While negotiations can be managed in the existing WS-Agreement frame-
work, this does not adequately reflect the complexity of penalty negotiation. For
example, if a mutually trusted third party cannot be agreed upon by both con-
sumer and provider, there is little point in proceeding with the SLA negotiation.
Similarly, if an SLA cannot be agreed upon, there is no need to negotiate the
penalty clause. Therefore it is instead proposed to separate these three stages
into distinct negotiation steps. Each of these steps follows the same steps as
shown in Figure 1: Advertisement; Request; Offer, and Acceptance/Rejection.
These steps can be considered negotiations for three separate services.

For example, negotiations to select a TTP proceeds as follows: In the Cre-
ation Constraint section of the WS-Agreement template, the TTPs trusted by
the service provider are listed. When the consumer receives this template, it
creates an agreement offer specifying the TTP that they have selected. The offer
is then processed by the provider. If it is acceptable, the provider produces the
agreement document. This is passed to the consumer for acceptance/rejection.
Negotiations for the SLAs and penalties are handled using the same process.

One concern with this approach is the verification that a SLA template refers
to the TTP agreement previously negotiated and, similarly, the penalty template
to the SLA and TTP agreements. This is achieved by the use of the references
to the prior agreements within the context section of proceeding templates and

www.manaraa.com

174 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

agreements. Each penalty agreement then contains references to the TTP and
SLA agreements. This ensures that a verifiable link is maintained throughout
the service negotiation and provision.

Another approach to the multi-step process could be to specify the template
and agreement documents as a single document, with separate services for each
of the three stages. This would eliminate the need for three separate negotiations.
However, this approach would make the templates more complicated.

4.1 Multiround Negotiation

While negotiation of penalties may become a standard part of SLA negoti-
ations, it is an area where multiple rounds of negotiation has potential to be
particularly useful. Several proposals are under consideration by the GRAAP
working group of the Open Grid Forum (OGF) towards supporting multiround
negotiation. One possible approach is to allow ‘negotiation offers’. Such of-
fers would form a non-binding template offering suggestions what might be
acceptable to the offering party. Such offers would form part of a session where
multiple rounds of offers could be provided by one or both parties without
altering the fundamental principles of WS-Agreement. Such an approach has
the advantage of allowing a rollback mechanism. As each offer forms part
of a session and each session has a unique identifier within the negotiation,
if negotiations are diverging, the parties would have the option to revert to a
previous session.

Multiround negotiations have the potential to allow agreement to be reached
on both the service QoS details as well as any penalty clauses. Session based
negotiation also has the advantage of allowing both the functional and non-
functional aspects to be negotiated seperately, where options could be negotiated,
such as, “service x with deadline 200, penalty $50, price $200” or “service x
with deadline 500, penalty $10, price $100”. This would allow much more
flexibility to both the provider and consumer. However, no such multiround
negotiation mechanism exists within the current WS-Agreement specification.

4.2 Renegotiation

While current work focuses on penalizing violations of SLAs, one alternative
approach is to renegotiate the SLA during enactment. For example, such an
approach would allow the producer and consumer to alter the SLA towards
providing a more realistic deadline for the consumer and potentially reducing
any penalties that the producer would otherwise be subject. Such a mechanism
could take advantage of multiround sessions that formed part of the original
negotiation. For example, if a previous round had a longer deadline, at a lower
price, the renegotiation might take the form of both parties agreeing to select
this SLA session as a replacement. However, this would entail both parties

www.manaraa.com

Negotiation of SLAs 175

storing the entire set of negotiation sessions until after provisioning has been
completed.

Another approach to renegotiation would be for a new round of negotiations
to take place during the enactment of the service. An example of this approach
would use a version of the existing WS-Agreement negotiation framework,
with the initial positions reflecting the current state of the enactment. This
renegotiation process could form the penalty associated with an existing SLA.
This would allow the enactment to proceed without explicit penalties. Such an
approach has the advantage of allowing implicit penalties to be negotiated only
when required and making these penalties reflect the exact situation rather than
the more abstract penalties that would be determined beforehand.

5. Discussion and Conclusion

The use of penalties in SLAs has obvious benefits for both clients and service
providers. Monetary sanctions (and optionally reputation based mechanisms)
can be used as, pre-agreed, penalties. Both of these approaches require the
participation of a Trusted Third Party. The types of monitoring infrastructure
that can be used to validate SLOs during service provisioning are identified. As
monetary sanctions are the de facto standard in industry for penalty clauses,
these are preferred over reputation based solutions, though the latter can be used
if so required.

While explicit penalties can be specified within the WS-Agreement frame-
work, they lack flexibility when unexpected events interrupt enactment. This
paper discusses the use of both multiround negotiation and runtime renegotia-
tion of SLAs towards improving the experience for both service providers and
consumers. While such mechanisms are, as yet, undefined, they indicate an
interesting area of future research and usability of service level agreements.

Acknowledgments

This work supported by the NLnet Foundation (www.nlnet.nl) and the
EU FP7-IST-215890 “ALIVE" project. We are grateful to Dana Cojocarasu
(Research Center for Computers and Law, University of Oslo, Norway) for
contribution and discussion regarding European law for electronic contracts.

References

[1] The EigenTrust Algorithm for Reputation Management in P2P Networks., Budapest,
Hungary, 2003. ACM Press.

[2] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne, J.
Rofrano, S. Tuecke, and M. Xu, Web Services Agreement Specification (WS-Agreement),
Grid Forum Document, GFD.107, The Open Grid Forum, Joliet, Illinois, United States,
2007.

www.manaraa.com

176 GRIDS AND SOA FOR SERVICE LEVEL AGREEMENTS

[3] K.P. Clark, M. Warnier, T.B. Quillinan, and F.M.T. Brazier. Secure monitoring of service
level agreements. In Proceedings of the Second International Workshop on Organizational
Security Aspects (OSA 2010), IEEE, March 2010.

[4] L. Gymnopoulos, S. Dritsas, S. Gritzalis, and C. Lambrinoudakis. GRID security review.
Lecture Notes in Computer Science, pages 100–111, 2003.

[5] J. Sabater and C. Sierra Social regret, a reputation model based on social relations.
SIGecom Exch., 3(1):44-56, 2002.

[6] A. Jøsang, R. Ismail, and C. Boyd. A survey of trust and reputation systems for online
service provision. Decision Support Systems, 43(2):618–644, 2007.

[7] A. Keller and H. Ludwig. The WSLA framework: Specifying and monitoring service level
agreements for web services. Journal of Network and Systems Management, 11(1):57–81,
March 2003.

[8] D. Khader, J. Padget, and M. Warnier. Reactive monitoring of service level agreements.
In In the Service Level Agreements in Grids Workshop proceedings, 2009.

[9] D.G.A. Mobach, B.J. Overeinder, and F.M.T. Brazier. A WS-Agreement based resource
negotiation framework for mobile agents. Scalable Computing: Practice and Experience,
7(1):23–36, 2006.

[10] B.J. Overeinder and F.M.T. Brazier. Scalable middleware environment for agent-based
Internet applications. In Applied Parallel Computing, LNCS, Vol. 3732, pages 675–679.
Springer, Berlin, 2006.

[11] T.B. Quillinan, B.C. Clayton, and S.N. Foley. GridAdmin: Decentralising grid administra-
tion using trust management. In Proceedings of the Third International Symposium on
Parallel and Distributed Computing (ISPDC04), Cork, Ireland, July 2004.

[12] O. Rana, M. Warnier, T. B. Quillinan, and F. M. T. Brazier. Monitoring and reputation
mechanisms for service level agreements. In Proceedings of the 5th International Workshop
on Grid Economics and Business Models (GenCon), Las Palmas, Gran Canaria, Spain,
Springer Verlag, August 2008.

[13] O. Rana, M. Warnier, T.B. Quillinan, F.M.T. Brazier, and D. Cojocarasu. Managing
violations in service level agreements. In the Proceedings of the Usage of Service Level
Agreements in Grids Workshop, September 2007.

[14] A. Sahai, V. Machiraju, M. Sayal, L. J. Jin, and F. Casati. Automated sla monitoring for
web services. In EEE/IFIP DSOM, pages 28–41. Springer-Verlag, 2002.

www.manaraa.com

Author Index

Alnemr, Rehab, 45
Altmann, Jörn, 105
Battré, Dominic, 23
Bayon, Victor, 35
Berginc, Gregor, 35
Boley, Harold, 45
Brazier, Frances M.T., 67, 167
Clark, Kassidy P., 67, 167
Cunningham, Christina, 35
de Oliveira, Ely, 1
Edmonds, Andy, 35
Grauer, Manfred, 57
Hadalin, Primož, 35
Harmer, Terence J, 35
Hovestadt, Matthias, 23
Hudert, Sebastian, 145
Kennedy, John, 35
Khader, Dalia, 13
Koller, Bastian, 57, 157
Kuebert, Roland, 57
Laria, Guiseppe, 157
Maza, Jacek, 35

Meinel, Christoph, 45
Munoz Frutos, Henar, 157
Padget, Julain, 13
Paschke, Adrian, 45
Paurobally, Shamimabi, 133
Perrott, Ron, 35
Pfreundt, Franz-Josef, 1
Pontz, Tobias, 57
Quillinan, Thomas B., 167
Rana, Omer, 167
Risch, Marcel, 105
Rumpl, Angela, 89
Schikuta, Erich, 45
Suns, Yih Leong, 35
Tenschert, Axel, 57
Ul Haq, Irfan, 45
van Splunter, Sander, 67
von Laszewski, Gregor, 77
Wang, Lizhe, 77
Warnier, Martijn, 13, 67, 167
Wright, Peter, 35
Wäldrich, Oliver, 23, 89
Ziegler, Wolfgang, 89

P. Wieder et al. (eds.), Grids and Service-Oriented Architectures for Service Level Agreements,
DOI 10.1007/978-1-4419-7320-7, © Springer Science+Business Media, LLC 2010

	Contents
	Foreword
	Preface
	Contributing Authors
	MONITORING SERVICE LEVEL AGREEMENTS IN GRIDS WITH SUPPORT OF A GRID BENCHMARKING SERVICE
	1. Introduction
	2. Related Works
	3. Architecture
	4. Benchmark Suite
	5. Monitoring SLAs
	6. Conclusion
	References

	REACTIVE MONITORING OF SERVICE LEVEL AGREEMENTS
	1. Introduction
	2. Preliminaries
	2.1 Contract Signing Protocols
	2.2 Aggregate Signatures

	3. Service Evidential Protocol
	4. Passive Monitoring Scheme
	5. Reactive Monitoring Scheme
	6. Conclusions
	Acknowledgments
	References

	LESSONS LEARNED FROM IMPLEMENTING WS-AGREEMENT
	1. Introduction
	2. Related work
	3. Protocol
	4. Structure of Agreements
	4.1 Context
	4.2 Terms and States

	5. Templates
	6. Conclusion
	Example SLA
	Acknowledgments
	References

	SLA-AWARE RESOURCE MANAGEMENT
	1. Introduction
	1.1 Paper Organization

	2. Architecture Overview
	3. SLA Negotiation
	4. Resource provisioning and re-provisioning
	4.1 Live Migration

	5. Monitoring
	5.1 Monitoring Virtual Machines

	6. Related Work
	7. Conclusion and Future Work
	Acknowledgments
	References

	DISTRIBUTED TRUST MANAGEMENT FOR VALIDATING SLA CHOREOGRAPHIES
	1. Introduction
	2. A Framework for Validation of Hierarchical SLA Aggregations
	3. A PKI and Reputation-based Distributed Trust Model
	3.1 Single Sign-On and Delegation
	3.2 Reputation Transfer using Trust Reputation Center

	4. Proposed Model via Use Case Scenario
	5. Conclusion and Future Work
	References

	EVALUATION OF SERVICE LEVEL AGREEMENT APPROACHES FOR PORTFOLIO MANAGEMENT IN THE FINANCIAL INDUSTRY
	1. Introduction and Motivation
	2. Portfolio Management as Use Case taken from the Financial Industry
	3. Requirements on Service Level Agreement Approaches
	4. Analysis of Five Service Level Agreement Approaches
	4.1 Actual State of the Art
	4.2 Evaluation and Interpretation

	5. An Insight into the developed Management System
	6. Conclusion and Future Work
	Acknowledgments
	References

	EXPRESSING INTERVALS IN AUTOMATED SERVICE NEGOTIATION
	1. Introduction
	2. Interval Semantics
	3. Expressing intervals
	4. Expressing intervals in WS Agreement
	5. Conclusion
	Acknowledgments
	References

	GREENIT SERVICE LEVEL AGREEMENTS
	1. Introduction
	1.1 Impact Factors
	1.2 Service Level Agreements

	2. GreenIT Metrics
	3. GreenIT SLA Specifications
	4. GreenIT Services
	4.1 Thermal aware task scheduling service
	4.2 Dynamic voltage frequency scheduling service
	4.3 Integration services
	4.4 Portal

	5. Conlusion
	Acknowledgments
	References

	EXTENDING WS-AGREEMENT WITH MULTI-ROUND NEGOTIATION CAPABILITY
	1. Introduction
	2. WS-Agreement Version 1.0
	3. Use-Cases for negotiation
	3.1 Co-allocation and Resource Reservation
	3.2 Agreement on multiple QoS Parameters
	3.3 Grid Scheduler interoperation

	4. Protocol and messages for WS-Agreement-Negotiation
	4.1 Initialisation of the negotiation process
	4.2 Negotiation of the template
	4.3 Post-processing of the templates
	4.4 Negotiation Messages

	5. Implementation of WS-Agreement-Negotiation in SmartLM
	5.1 WS-Agreement Framework for Java (WSAG4J)
	5.2 SLA and Negotiation Service
	5.3 Creation of license agreement templates
	5.4 Negotiation
	5.5 Agreement creation
	5.6 Agreement termination

	6. Conclusions
	Acknowledgments
	References

	ENABLING OPEN CLOUD MARKETS THROUGH WS-AGREEMENT EXTENSIONS
	1. Introduction
	2. State of the Art
	2.1 WS-Agreement
	2.2 Existing Commercial Cloud Offers
	2.3 Open Cloud Market Enablers
	2.4 Computing Resource Markets Research

	3. Extending WS-Agreement
	 3.1 Diversity of Goods
	3.2 Composition of the Service Level Contract

	4. CRDL in Different Market Mechanisms
	4.1 Posted Price
	4.2 Negotiation Environment
	4.3 Single Auction
	4.4 Discussion of the Computing Resource Definition Language

	5. Conclusion and Future Work
	References

	SERVICE MEDIATION AND NEGOTIATION BOOTSTRAPPING AS FIRST ACHIEVEMENTS TOWARDS SELF-ADAPTABLE CLOUD SERVICES
	1. Introduction
	2. Related Work
	3. Adaptable, Versatile, and Dynamic services
	3.1 Overview
	3.2 Negotiation Bootstrapping and Service Mediation

	4. Meta-Negotiations
	4.1 Meta-Negotiation Scenario
	4.2 Meta-Negotiation Document (MND)

	5. SLA mappings
	5.1 Management of SLA mappings
	5.2 Scenario for SLA mappings
	5.3 SLA mappings Document (SMD)

	6. VieSLAF framework
	7. Conclusion and Future Work
	Acknowledgments
	References

	SLA NEGOTIATION FOR VO FORMATION
	1. Introduction
	2. VO Characteristics
	3. Sealed Bid Auction for VO Formation
	3.1 Sealed Bid Auction Service
	3.2 Service Level Agreement (SLA)

	4. Decision Making Strategies
	4.1 A Provider’s SLA Evaluation and Generation
	4.2 A VO Manager’s Evaluation of a Bid

	5. Evaluation of the Auction for VO Formation
	6. Conclusions
	References

	FROM SERVICE MARKETS TO SERVICE ECONOMIES – AN INFRASTRUCTURE FOR PROTOCOL-GENERIC SLA NEGOTIATIONS
	1. Introduction
	2. Vision for Next Generation Distributed Computing: Service Economies
	3. Research Goal and Requirements
	4. Related Work
	5. Design Proposal for a protocol-generic SLA Discovery and Negotiation Infrastructure
	6. Conclusion and Future Work
	References

	SERVICE LEVEL AGREEMENTS IN BREIN
	1. Introduction
	2. Addressing SLAs
	3. The SLA Schema
	3.1 General Issues
	3.2 Semantic Annotations

	4. The BREIN Architecture
	4.1 Creation

	5. Conclusion
	References

	NEGOTIATION AND MONITORING OF SERVICE LEVEL AGREEMENTS*
	1. Introduction
	2. Background
	3. Monitoring Violations in SLAs
	3.1 Online Monitoring
	3.2 Violations and Penalties

	4. Negotiation of Penalties
	4.1 Multiround Negotiation
	4.2 Renegotiation

	5. Discussion and Conclusion
	Acknowledgments
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

